• Title/Summary/Keyword: Artificial muscle

Search Result 205, Processing Time 0.03 seconds

Control of IPMC-based Artificial Muscle for Myoelectric Hand Prosthesis

  • Lee Myoung-Joon;Jung Sung-Hee;Moon Inhyuk;Lee Sukmin;Mun Mu-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.257-264
    • /
    • 2005
  • This paper proposes an ionic polymer metal composite (IPMC) based artificial muscle to be applicable to the Myoelectric hand prosthesis. The IPMC consists of a thin polymer membrane with metal electrodes plated chemically on both faces, and it is widely applying to the artificial muscle because it is driven by relatively low input voltage. The control commands for the IPMC-based artificial muscle is given by electromyographic (EMG) signals obtained from human forearm. By an intended contraction of the human flexor carpi ulnaris and extensor carpi ulnaris muscles, we investigated the actuation behavior of the IPMC-based artificial muscle. To obtain higher actuation force of the IPMC, the single layered as thick as $800[{\mu}m]$ or multi-layered IPMC of which each layer can be as thick as $178[{\mu}m]$ are prepared. As a result, the bending force was up to the maximum 12[gf] from 1[gf] by actuating the single layered IPMC with $178[{\mu}m]$, but the bending displacement was reduced to 6[mm] from 30[mm]. The experimental results using an implemented IPMC control system show a possibility and a usability of the bio-mimetic artificial muscle.

Intelligent Switching Control of the Pneumatic Artificial Muscle Manipulators

  • Ahn, Kyoung-Kwan;Thanh, TU Diep Cong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.76-81
    • /
    • 2004
  • Problems with the control, oscillatory motion and compliance of pneumatic systems have prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, ease of maintenance and inherent safety are factors that could be potentially exploited in sophisticated dexterous manipulator designs. These advantages have led to the development of novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle Manipulators. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external inertia load in the pneumatic artificial muscle manipulator. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is newly proposed. This estimates the external inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external inertia loads.

  • PDF

Improvement of the Control Performance of Pneumatic Artificial Muscle Manipulators Using an Intelligent Switching Control Method

  • Ahn, Kyoung-Kwan;Thanh, TU Diep Cong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1388-1400
    • /
    • 2004
  • Problems with the control, oscillatory motion and compliance of pneumatic systems have prevented their widespread use in advanced robotics. However, their compactness, power/weight ratio, ease of maintenance and inherent safety are factors that could be potentially exploited in sophisticated dexterous manipulator designs. These advantages have led to the development of novel actuators such as the McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle Manipulators. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external inertia load in the pneumatic artificial muscle manipulator. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is newly proposed. This estimates the external inertia load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external inertia loads.

Trajectory Tracking Control of Pneumatic Artificial Muscle Driving Apparatus based on the Linearized Model (공압 인공근육 구동장치의 선형화 모델 기반 궤적추적제어)

  • Jang, J.S.;Yoo, W.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-103
    • /
    • 2006
  • In this study, a position trajectory tracking control algorithm is proposed for a pneumatic artificial muscle driving apparatus composed of a actuator which imitates the muscle of human, a position sensor and a control valve. The controller applied to the driving apparatus is composed of a state feedback controller and disturbance observer. The feedback controller which feeds back position, velocity and acceleration is derived from the linear model of pneumatic artificial muscle driving apparatus. The disturbance observer is designed to improve trajectory tracking performance and to reduce the effect of model discrepancy. The effectiveness of the designed controller is proved by experiments and the experimental results show that the pneumatic artificial muscle driving apparatus with the proposed control algorithm tracks given position reference inputs accurately.

  • PDF

A finite element analysis of a new design of a biomimetic shape memory alloy artificial muscle

  • Jaber, Moez Ben;Trojette, Mohamed A.;Najar, Fehmi
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.479-496
    • /
    • 2015
  • In this work, a novel artificial circular muscle based on shape memory alloy (S.M.A.) is proposed. The design is inspired from the natural circular muscles found in certain organs of the human body such as the small intestine. The heating of the prestrained SMA artificial muscle will induce its contraction. In order to measure the mechanical work provided in this case, the muscle will be mounted on a silicone rubber cylindrical tube prior to heating. After cooling, the reaction of the rubber tube will involve the return of the muscle to its prestrained state. A finite element model of the new SMA artificial muscle was built using the software "ABAQUS". The SMA thermomechanical behavior law was implemented using the user subroutine "UMAT". The numerical results of the finite element analysis of the SMA muscle are presented to shown that the proposed design is able to mimic the behavior of a natural circular muscle.

Functional Characteristics of TRPC4 Channels Expressed in HEK 293 Cells

  • Sung, Tae Sik;Kim, Min Ji;Hong, Soojin;Jeon, Jae-Pyo;Kim, Byung Joo;Jeon, Ju-Hong;Kim, Seon Jeong;So, Insuk
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.167-173
    • /
    • 2009
  • The classical type of transient receptor potential (TRPC) channel is a molecular candidate for $Ca^{2+}$-permeable cation channels in mammalian cells. Because TRPC4 and TRPC5 belong to the same subfamily of TRPC, they have been assumed to have the same physiological properties. However, we found that TRPC4 had its own functional characteristics different from those of TRPC5. TRPC4 channels had no constitutive activity and were activated by muscarinic stimulation only when a muscarinic receptor was co-expressed with TRPC4 in human embryonic kidney (HEK) cells. Endogenous muscarinic receptor appeared not to interact with TRPC4. TPRC4 activation by $GTP{\gamma}S$ was not desensitized. TPRC4 activation by $GTP{\gamma}S$ was not inhibited by either Rho kinase inhibitor or MLCK inhibitor. TRPC4 was sensitive to external pH with $pK_a$ of 7.3. Finally, TPRC4 activation by $GTP{\gamma}S$ was inhibited by the calmodulin inhibitor W-7. We conclude that TRPC4 and TRPC5 have different properties and their own physiological roles.

Adaptive Control for Trajectory Tracking of a Manipulator with Pneumatic Artificial Muscle Actuators (공압인공근육로봇의 궤적추종의 적응제어)

  • Park, H.W.;Park, N.C.;Yang, H.S.;Park, Y.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.100-107
    • /
    • 1997
  • A pneumatic artificial muscle type of actuator, which acts similar to human muscle, is developed recently. In this paper, an adaptive controller is presented for the trajectory tracking problem of a two-degree- of-freedom manipulator using two pairs of pneumatic artificial muscle actuators. Due to the nonlinearity and the uncertainty on the dynamics of the actuator, it is difficult to make the effective control schemes of this system. By the adaptive control law which inclueds a nonlinear "feedforward" term compensating paramet- ric uncertainties in addition to P.I.D. scheme, both golbal stability of the system and convergence of the tracking error are guaranted. The effectiveness of the proposed control method for the manipulator using this actuator is illustrated through experiments.periments.

  • PDF

Modeling and designing a power assist circuit using artificial muscle

  • Kagawa, Toshiharu;Fujita, Toshinori;Kawashima, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.121-126
    • /
    • 1993
  • Artificial muscle actuators are used in various fields. Especially, they are applied to the power assist circuit to make use of their characteristics. The purpose of this paper is to and analyze the power assist circuit using an artificial muscle actuator. As a result, it is found that the operating feeling of the power assist circuit depends mainly on the flow gain of the pneumatic servo valve. The required flow gain is calculated from the proposed model, and the experimental results agreed with the calculated results.

  • PDF

A Study on Position and Force Control of A Robot Manipulator with Artificial Rubber Muscle (고무인공근 로보트 매니퓨레이터의 위치 및 힘 제어에 관한 연구)

  • Jin, Sang-Ho;Watanabe, Keigo;Lee, Suck-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.97-103
    • /
    • 1995
  • This paper describes position and force hybrid control for a robot manipulator with artificial rubber muscle actuators. The controller using two control laws such as PID control and fuzzy logic control methods is designed. This paper concludes to show the effectiveness of the proposed controller by some experiments for a two-link manipulator.

  • PDF

Robust control of a flexible manipulator with artificial pneumatic muscle actuators (유연한 공압인공근육로봇의 강건제어)

  • 박노철;박형욱;박영필;정승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1704-1707
    • /
    • 1997
  • In this work, position and vibratiion control of a two-link manipulator with one flexible link, which an unkoun but bounded payload mass and two pair of artificial muscle-type penumatic actuators, are investgated. A flexible link robot has advantages over a figid link robot in the sense that it is much safer when it cones into contact with its environment, including humans. Furthermore, for the sake of safety, it would be more desirabel if an actuator could deliver required force while maintaining proper compliance. An artificial muscle-type penumatic actuator is adequate for such cases. In this study, a controller based on singular perturbation method, adaptive and sliding mode contro, and .mu.-synthesis is developed. The effectiveness of the proposed control scheme is confirmed through simulations and experiments.

  • PDF