• Title/Summary/Keyword: Ascophyllum nodosum extract

Search Result 4, Processing Time 0.019 seconds

A Biostimulant Preparation of Brown Seaweed Ascophyllum nodosum Suppresses Powdery Mildew of Strawberry

  • Bajpai, Sruti;Shukla, Pushp Sheel;Asiedu, Samuel;Pruski, Kris;Prithiviraj, Balakrishnan
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.406-416
    • /
    • 2019
  • Strawberry, an important fruit crop, is susceptible to a large number of pathogens that reduce fruit quality and productivity. In this study, the effect of a biostimulant prepared from Ascophyllum nodosum extract (ANE) (0.1%, 0.2%, and 0.3%) was evaluated on powdery mildew progression under greenhouse and field conditions. In the greenhouse, application of 0.2% ANE showed maximum reduction in powdery mildew progression as compared to the control. Forty-eight hour post-inoculation, foliar spray of 0.2% ANE reduced spore germination by 75%. Strawberry leaves sprayed with ANE showed higher total phenolic and flavonoid content in response to powdery mildew infection. Furthermore, application of ANE elicited defense response in strawberry plants by induction of defense-related enzymes, such as phenylalanine ammonia lyase, polyphenol oxidase, and peroxidase activity. In field conditions, foliar spray of 0.2% ANE showed a reduction of 37.2% of natural incidence of powdery mildew infection as compared to the control. ANE sprayed plant also reduces the severity of powdery mildew infection under natural conditions. These results indicate that application of ANE induces the strawberry plant's active defense against powdery mildew infection by induction of secondary metabolism and regulating the activities of defense-related enzymes.

Effect of Organic Fertilizer, Microorganism and Swaweed extract Application on Growth of Chinese Cabbage (유기질비료와 토양미생물제제 및 해초추출물 시용이 배추수량에 미치는 영향)

  • Cho, Sung-Hyun;Park, Tae-Hurn
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.81-85
    • /
    • 2002
  • This study was carried out to investigate the effect of organic fertilizer(OM-1 : $300kgha^{-1}$, OM-2 : $600kgha^{-1}$), microorganism(ML : liquid form, MP : powder form) and seaweed extract ; ascophyllum nodosum(AF : foliar application, AI ; irrigation) on the growth and yield of the chinese cabbage. At the treatment of organic fertilizer OM-2 have appeared the best yield. According to the application of microorganism appeared certainly increasing yield of cabbage by application of powder form. The excess application of organic fertilizer OM-2 should not be occurred fertilizer damages and increased on the growth and yield by use of microorganism, In application of sewweed extract treatment, the cabbage yield increased by irrigation method.

  • PDF

Reevaluation of bactericidal, cytotoxic, and macrophage-stimulating activities of commercially available Fucus vesiculosus fucoidan

  • Nishiguchi, Tomoki;Jiang, Zedong;Ueno, Mikinori;Takeshita, Satoshi;Cho, Kichul;Roh, Seong Woon;Kang, Kyong-Hwa;Yamaguchi, Kenichi;Kim, Daekyung;Oda, Tatsuya
    • ALGAE
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2014
  • Polysaccharides prepared from marine algae sometimes contain contaminants such as polyphenols and endotoxins that may mislead their bona fide biological activities. In this study, we examined bioactive contaminants in commercially available fucoindan from Fucus vesiculosus, along with ascophyllan and fucoidan from Ascophyllum nodosum. F. vesiculosus fucoidan inhibited the growth of Vibrio alginolyticus in a concentration-dependent manner ($0-1,000{\mu}g\;mL^{-1}$). However, the antibacterial activity of the fucoidan significantly reduced after methanol-extraction, and the methanol-extract showed a potent antibacterial activity. The extract also showed cytotoxicity to RAW264.7 and U937 cells, and induced apoptotic nuclear morphological changes in U937 cells. These results suggest that the antibacterial activity of the fucoidan is partly due to the methanol-extractable contaminants that can also contribute to the cytotoxicity on RAW264.7 and U937 cells. On the other hand, the activities to induce secretion of nitric oxide and tumor necrosis factor-${\alpha}$ from RAW264.7 cells were observed in the fucoidan even after methanol extraction, and the extract had no such activities. Our observations suggest that commercially available fucoidan should be purified prior to biochemical use.

Effects of biostimulants, AMPEP and Kelpak on the growth and asexual reproduction of Pyropia yezoensis (Bangiales, Rhodophyta) at different temperatures

  • Sook Kyung Shin;Qikun Xing;Ji-Sook Park;Charles Yarish;Fanna Kong;Jang K. Kim
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.31-41
    • /
    • 2024
  • Acadian marine plant extract powder (AMPEP) and Kelpak are commercial biostimulants derived from brown algae Ascophyllum nodosum. This study was to determine if AMPEP and Kelpak can induce thermal resistance in Pyropia yezoensis. P. yezoensis blades were exposed to different concentrations (control: 0, low: 0.001, high: 1 ppm) of AMPEP and Kelpak at 10℃ for 6 and 7 days, respectively. Those blades were then cultivated in von Stosch enriched seawater medium at different temperatures (10, 15, 20, and 25℃) with 12 : 12 L : D photoperiod and 100 µmol m-2 s-1 of photosynthetically active radiation for additional 15 days. Results showed that P. yezoensisreproduced archeospores at 20 and 25℃ at all biostimulant conditions within 15 days. At lower temperatures (10 and 15℃), only AMPEP-treated P. yezoensis reproduced archeospores. P. yezoensis exposed to 1 ppm Kelpak exhibited higher phycoerythrin and phycocyanin contents than control and 0.001 ppm conditions at 15℃. AMPEP-treated conditions showed higher phycoerythrin and phycocyanin contents than control at 10℃. These results suggest that AMPEP and Kelpak may not enhance the thermal resistance of P. yezoensis. However, AMPEP stimulated archeospores release at lower temperatures. The treatment of AMPEP and Kelpak also increased the pigment contents in P. yezoensis. These results suggest that the use of seaweed-derived biostimulants can provide some economic benefits in P. yezoensis aquaculture. The enhancement of archeospores formation by AMPEP at lower temperature may also increase the productivity since Pyropia farming relies on the accumulation of secondary seedings via asexual reproduction.