• Title/Summary/Keyword: Asymmetric Inlet Condition

Search Result 7, Processing Time 0.019 seconds

Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (II) - Effects of Asymmetric Inlet Flow Condition - (정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (II) - 비대칭 입구조건 효과 -)

  • Rhee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.937-944
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet now condition. The asymmetric inlet now condition is achieved by making distances between side walls of the secondary now duct and the film cooling hole different; one side wall is $2D_h$ apart from the center of the film cooling hole, while the other side wall is $1.5D_h$ apart from the center of the film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the now field has been analyzed by numerical calculation using a commercial code. Swirl now is generated at the inlet region and the heat/mass transfer pattem with the asymmetric inlet now condition is changed significantly from that with the symmetric condition. In the exit region, the effect of mainstream on the inside hole now is reduced with the asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl now generated by the asymmetric inlet condition.

Heat/Mass Transfer and Flow Characteristics within a Film Cooling Hole of Square Cross Sections with Asymmetric Inlet Flow Condition (비대칭 입구조건을 갖는 정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성)

  • Rhee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.14-21
    • /
    • 2001
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet flow conditions. The asymmetric inlet flow condition is achieved by making distances between side walls of secondary flow duct and film cooling hole different; one side wall is $2D_h$ apart from the center of film cooling hole, while the other side wall is $1.5D_h$ apart from the center of film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. Swirl flow is generated at the inlet region and the heat/mass transfer pattern with the asymmetric inlet flow condition is changed significantly from that with the symmetric condition. At the exit region, the effect of mainstream on the inside hole flow is reduced with asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl flow generated by the asymmetric inlet condition.

  • PDF

Characteristics of Flow past a Sphere in Uniform Shear (균일 전단유동 내에 위치한 구 주위의 유동특성)

  • Kim, Dong-Joo;Choi, Hyung-Seok;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1607-1612
    • /
    • 2004
  • Numerical simulations are performed to investigate the characteristics of flow past a sphere in uniform shear. The Reynolds numbers considered are Re=300, 425 and 480 based on the inlet center velocity and sphere diameter. The non-dimensional shear rate K of the inlet uniform shear is varied from 0 to 0.15. At Re=300, the head of the hairpin vortex loop always locates on the high-velocity side in uniform shear, and the flow maintains the planar symmetry. At Re=425 and 480, the irregularity in the location and strength of the hairpin vortex appearing in uniform inlet flow is much reduced in uniform shear, but the flows still keep the asymmetry for most inlet shear rates. However, in the cases of K=0.075 and 0.1 at Re=425, the flows become planar symmetric and their characteristics of the evolution of the hairpin vortex loops are different from those of asymmetric flows. A hysteresis phenomenon switching from the planar symmetry to the asymmetry (or vice versa) depending on the initial condition is also observed at Re=425.

  • PDF

Numerical Investigation of Asymmetric Flow in a Symmetric Channel with Sudden Expansion (대칭 확대 도관에서의 비대칭 흐름에 관한 연구)

  • Min Byeong Gwang;Jang Geun Sik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.68-73
    • /
    • 1996
  • The full incompressible Navier-Stokes equations are numerically integrated to solve the unsteady channel flow using a new numerical scheme of second-order accuracy developed by the authors. It is well known that in spite of the symmetry in the boundary condition and geometry, asymmetry can develop with time-dependency in a channel with sudden expansion. The instability of the shear flow and the cross-channel pressure contribute to such asymmetric flow. In this paper, we successfully generated a channel flow in which vortex waves were propagated downstream due to the harmonically oscillating inlet flow. The structure of the eddies and wall vorticity are parametrically investigated.

  • PDF

Numerical investigation of LP turbine-exhaust hood interaction in the steam turbine exhaust system (스팀터빈 Exhaust System에서 LP터빈과 Exhaust Hood 사이의 간섭에 대한 수치해석적 연구)

  • Im, Ji-Hyun;Joo, Won-Gu;Kim, Young-Sang;Im, Hong-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.291-294
    • /
    • 2006
  • Exhaust system of steam turbines consists of an annular diffuser and a collector and connects the last stage turbine and the condenser. The system is used to transfer the turbine leaving kinetic energy to potential energy while guiding the flow from turbine exit plane to the downstream condenser. In the steam turbine exhaust system, distorted pressure profile is arisen by the nonaxisymmetric collector structure at the diffuser outlet, and this distorted pressure is propagated to the last stage LP turbine exit plane through the diffuser, then the last stage LP turbine experiences asymmetric back pressure. It is known that the pressure recovery performance of diffuser is strongly influenced by diffuser inflow condition. In this study, the effect of exhaust system due to the changing of inlet flow condition is observed by using CFD, and the interaction of last stage LP turbine and exhaust system is investigated by using actuator disk model as modeling of turbine blade row of exhaust hood inlet.

  • PDF

Flow Characteristics of Rectangular Space with Asymmetric Inlet and Outlet (비대칭 입출구를 갖는 장방형공간의 유동특성)

  • Lee, Cheol-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.261-266
    • /
    • 2006
  • In this study, a scaled model chamber was built to investigate ventilation characteristics of the hood room in LNG carrier. Experimental study was performed in model by visualization equipment with laser apparatus. Four different kinds of measuring area were selected as experimental condition Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system and its software adopting two-frame grey-level cross correlation algorithm. The flow pattern reveals the large scale counter-clockwise forced-vortex rotation at center area.

  • PDF

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.