• Title/Summary/Keyword: Asymmetric cryptographic

Search Result 29, Processing Time 0.02 seconds

Accelerating Symmetric and Asymmetric Cryptographic Algorithms with Register File Extension for Multi-words or Long-word Operation (다수 혹은 긴 워드 연산을 위한 레지스터 파일 확장을 통한 대칭 및 비대칭 암호화 알고리즘의 가속화)

  • Lee Sang-Hoon;Choi Lynn
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.1-11
    • /
    • 2006
  • In this paper, we propose a new register file architecture called the Register File Extension for Multi-words or Long-word Operation (RFEMLO) to accelerate both symmetric and asymmetric cryptographic algorithms. Based on the idea that most of cryptographic algorithms heavily use multi-words or long-word operations, RFEMLO allows multiple contiguous registers to be specified as a single operand. Thus, a single instruction can specify a SIMD-style multi-word operation or a long-word operation. RFEMLO can be applied to general purpose processors by adding instruction set for multi-words or long-word operands and functional units for additional instruction set. To evaluate the performance of RFEMLO, we use Simplescalar/ARM 3.0 (with gcc 2.95.2) and run detailed simulations on various symmetric and asymmetric cryptographic algorithms. By applying RFEMLO, we could get maximum 62% and 70% reductions in the total instruction count of symmetric and asymmetric cryptographic algorithms respectively. Also, performance results show that a speedup of 1.4 to 2.6 can be obtained in symmetric cryptographic algorithms and a speedup of 2.5 to 3.3 can be obtained for asymmetric cryptographic algorithms when we apply RFEMLO to a processor with an in-order pipeline. We also found that RFEMLO can effectively improve the performance of these cryptographic algorithms with much less cost compared to issue-width increase available in Superscalar implementations. Moreover, the RFEMLO can also be applied to Superscalar processor, leading to additional 83% and 138% performance gain in symmetric and asymmetric cryptographic algorithms.

RI-RSA system design to increase security between nodes in RFID/USN environments (RFID/USN 환경에서 노드들간의 보안성 증대를 위한 RI-RSA 시스템 설계)

  • Lee, Seon-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.157-162
    • /
    • 2010
  • Due to the IT development, RFID/USN became very familiar means of communication. However, because of increased number, security, and size constraints of nodes, it is insufficient to implement a variety of services. To solve these problems, this paper suggests RI-RSA, which is an appropriate asymmetric cryptographic system for RFID/USN environment. The proposed RI-RSA cryptographic system is easy to implement. To increase the processing speed, RI-RSA was suggested by subdividing the multiplication section into two-dimensional, where bottleneck phenomena occurs, and it was implemented in the hardware chip level. The simulation result verified that it caused 6% of circuit reduction, and for the processing speed, RI-RSA was 30% faster compare to the existing RSA.

Toward a New Safer Cybersecurity Posture using RC6 & RSA as Hybrid Crypto-Algorithms with VC Cipher

  • Jenan.S, Alkhonaini;Shuruq.A, Alduraywish;Maria Altaib, Badawi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.164-168
    • /
    • 2023
  • As our community has become increasingly dependent on technology, security has become a bigger concern, which makes it more important and challenging than ever. security can be enhanced with encryption as described in this paper by combining RC6 symmetric cryptographic algorithms with RSA asymmetric algorithms, as well as the Vigenère cipher, to help manage weaknesses of RC6 algorithms by utilizing the speed, security, and effectiveness of asymmetric algorithms with the effectiveness of symmetric algorithm items as well as introducing classical algorithms, which add additional confusion to the decryption process. An analysis of the proposed encryption speed and throughput has been conducted in comparison to a variety of well-known algorithms to demonstrate the effectiveness of each algorithm.

A Study on Secure Binding Update Protocol Supporting Mobile Nodes with Constraint Computational Power in Mobile IPv6 Environment (모바일 IPv6 환경에서 제한된 계산 능력을 갖는 모바일 노드를 지원하는 바인딩 갱신 인증 프로토콜에 관한 연구)

  • Choi, Sung-Kyo;You, Il-Sun
    • Journal of Internet Computing and Services
    • /
    • v.6 no.5
    • /
    • pp.11-25
    • /
    • 2005
  • In MIPv6 environment, an important design consideration for public key based binding update protocols is to minimize asymmetric cryptographic operations in mobile nodes with constraint computational power, such as PDAs and cellular phones, For that, public key based protocols such as CAM-DH. SUCV and Deng-Zhou-Bao's approach provides an optimization to offload asymmetric cryptographic operations of a mobile node to its home agent. However, such protocols have some problems in providing the optimization. Especially, CAM-DH with this optimization does not unload all asymmetric cryptographic operations from the mobile node, while resulting in the home agent's vulnerability to denial of service attacks. In this paper, we improve the drawbacks of CAM-DH. Furthermore, we adopt Aura's two hash-based CGA scheme to increase the cost of brute-force attacks searching for hash collisions in the CGA method. The comparison of our protocol with other public key based protocols shows that our protocol can minimize the MN's computation overhead, in addition to providing better manageability and stronger security than other protocols.

  • PDF

Asymmetric Public Key Cryptography by Using Logic-based Optical Processing

  • Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.55-63
    • /
    • 2016
  • In this paper, a new asymmetric public key cryptography based on the modified RSA algorithm is proposed by using logic-based optical processing. The proposed asymmetric public key algorithm is realized into an optical schematic, where AND, OR and XOR logic operations are implemented by using free space digital optics architecture. Schematically, the proposed optical configuration has an advantage of generating the public keys simultaneously. Another advantage is that the suggested optical setup can also be used for message encryption and decryption by simply replacing data inputs of SLMs in the optical configuration. The last merit is that the optical configuration has a 2-D array data format which can increase the key length easily. This can provide longer 2-D key length resulting in a higher security cryptosystem than the conventional 1-D key length cryptosystem. Results of numerical simulation and differential cryptanalysis are presented to verify that the proposed method shows the effectiveness in the optical asymmetric cryptographic system.

Custom Cryptographic Protocol Implementation Method Based on OpenSSL (OpenSSL 기반 사용자 지정 암호 프로토콜 구현 방안)

  • Lam, JunHuy;Lee, Sang-Gon;Lee, Hoon-Jae;Andrianto, Vincentius Christian
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.3
    • /
    • pp.459-466
    • /
    • 2017
  • One of the most widely-used open source project; OpenSSL is a cryptography library that is used to secure most web sites, servers and clients. One can secure the communication with the Secure Socket Layer (SSL) or its successor, Transport Layer Security (TLS) protocols by using the OpenSSL library. Since cryptography protocols will be updated and enhanced in order to keep the system protected, the library was written in such a way that simplifies the integration of new cryptographic methods, especially for the symmetric cryptography protocols. However, it gets a lot more complicated in adding an asymmetric cryptography protocol and no guide can be found for the integration of the asymmetric cryptography protocol. In this paper, we explained the architecture of the OpenSSL library and provide a simple tutorial to modify the OpenSSL library in order to accommodate custom protocols of both symmetric and asymmetric cryptography.

A Study on Authentication Algorithm for NFC Security Channel (NFC 보안 채널을 위한 인증 알고리즘에 관한 연구)

  • Lee, Seon-Keun;Jeong, Woo-Yeol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.805-810
    • /
    • 2012
  • Recently, applications range of NFC is widening by popularization of smartphone. Expansion of NFC means generalization of electronic payments systems. So security of NFC is very important. AES-128 is safe cryptographic technique for NFC now in use. But, the more range of applications increases, the more safe cryptographic techniques are necessary. In this paper, we propose the safe method is unaffected by the development of NFC. Proposed A-NFC scheme, adding the authentication of asymmetric cryptographic, is easy to apply for NFC and NFC-USIM chipsets, and it can adapt to the general NFC environment.

Efficient Certificateless Authenticated Asymmetric Group Key Agreement Protocol

  • Wei, Guiyi;Yang, Xianbo;Shao, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3352-3365
    • /
    • 2012
  • Group key agreement (GKA) is a cryptographic primitive allowing two or more users to negotiate a shared session key over public networks. Wu et al. recently introduced the concept of asymmetric GKA that allows a group of users to negotiate a common public key, while each user only needs to hold his/her respective private key. However, Wu et al.'s protocol can not resist active attacks, such as fabrication. To solve this problem, Zhang et al. proposed an authenticated asymmetric GKA protocol, where each user is authenticated during the negotiation process, so it can resist active attacks. Whereas, Zhang et al.'s protocol needs a partially trusted certificate authority to issue certificates, which brings a heavy certificate management burden. To eliminate such cost, Zhang et al. constructed another protocol in identity-based setting. Unfortunately, it suffers from the so-called key escrow problem. In this paper, we propose the certificateless authenticated asymmetric group key agreement protocol which does not have certificate management burden and key escrow problem. Besides, our protocol achieves known-key security, unknown key-share security, key-compromise impersonation security, and key control security. Our simulation based on the pairing-based cryptography (PBC) library shows that this protocol is efficient and practical.

Realization of the Biba Security Model in an OSI-distributed (OSI-분산 시스템에서의 Biba Security 모델의 구현)

  • Park, Chong-Hwa
    • The Journal of Information Technology
    • /
    • v.5 no.2
    • /
    • pp.35-45
    • /
    • 2002
  • This paper discusses a distributed implementation of the Biba security policy model. Implementation of an service in the OSI-RM is not sufficient for enforcing the Biba model. Also confidentiality services are necessary. Public Key Systems(PKSs) are considered for the realization of these security services. In this paper symmetric & asymmetric cryptographic systems are considered for the realization of these security service. It is investigated how key-distributions can be found resulting in a minimum number of key.

  • PDF

Review Of Some Cryptographic Algorithms In Cloud Computing

  • Alharbi, Mawaddah Fouad;Aldosari, Fahd;Alharbi, Nawaf Fouad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.41-50
    • /
    • 2021
  • Cloud computing is one of the most expanding technologies nowadays; it offers many benefits that make it more cost-effective and more reliable in the business. This paper highlights the various benefits of cloud computing and discusses different cryptography algorithms being used to secure communications in cloud computing environments. Moreover, this thesis aims to propose some improvements to enhance the security and safety of cloud computing technologies.