• Title/Summary/Keyword: Asymmetrical cold rolling

Search Result 9, Processing Time 0.021 seconds

Effect of friction between roll and sample on residual shear strains in AA1050 sheet during asymmetrical rolling (비대칭 압연한 AA1100 판재에서 잔류전단변형에 미치는 롤과 재료간의 마찰의 영향)

  • 지영규;정효태;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.156-158
    • /
    • 2003
  • Sheets of aluminum alloy 1050 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed. The variation of the shear strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced residual shear strain gradients throughout the thickness layers.

  • PDF

Development of Texture in Aluminum 1100 Sheets during Asymmetrical Rolling. (비대칭 압연시 알루미늄 1100 판재에서 집합조직 형성)

  • 지영규;정효태;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.105-108
    • /
    • 2003
  • Sheets of aluminum alloy 1100 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed. The evolution of texture components during asymmetrical rolling was investigated by the calculation of the orientation distribution function (ODF) using the monoclinic sample symmetry. The strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the aluminum sheet.

  • PDF

Development of Deformation Texture in Aluminum Sheets during Asymmetrical Rolling with a Roll Speed Ratio of 1.5/l.0 (롤속도 비 1.5/l.0 비대칭 압연 시 알루미늄 판재에서 변형집합조직의 형성)

  • 지영규;정효태;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2003
  • Sheets of aluminum alloy 1100 were asymmetrically cold rolled in a rolling mill with different roll speeds. In order to promote the shear deformation during asymmetrical rolling, cold rolling without lubrication was performed with a roll speed ratio of 1.5/l.0. The evolution of texture components during asymmetrical rolling was investigated by the calculation of the orientation distribution function (ODF) using the monoclinic sample symmetry. The strain state during asymmetrical rolling was tackled by means of FEM calculations. Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the aluminum sheet.

Evolution of Strain States and Textures During Symmetrical/Asymmetrical Cold Rolling (냉간 대칭/비대칭 압연시 압연변형율 상태와 집합조직의 형성)

  • Huh Moo-Young;Lee Jae-Pil;Lee Jae-Hyup
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.19-24
    • /
    • 2004
  • Symmetrical and asymmetrical rolling was performed in AA 1050 sheets. Asymmetrical rolling was carried out by using different roll velocities of upper and lower rolls. The effect of the reduction per rolling pass on the formation of textures and microstructures during symmetrical and asymmetrical rolling was studied. In order to intensify the shear deformation, symmetrical and asymmetrical rolling was carried out without lubrication. The strain states associated with rolling were investigated by simulations with the finite element method (FEM). A fairly homogeneous residual shear strain throughout the sheet thickness was observed after asymmetrical rolling. Symmetrical rolling with a high friction gave rise to a strong net shear strain gradient in the sheet thickness.

  • PDF

Improvement of shear deformation by controlling reduction per a rolling pass during asymmetrical cold rolling in AA 5052 (AA5052 판재의 비대칭 냉간압연 시 압연 패스당 압하율 제어에 의한 전단 변형 향상)

  • Kang, H.G.;Han, Y.H.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.226-228
    • /
    • 2007
  • During asymmetrical cold rolling in AA 5052 sheet a reduction per a rolling pass was varied to investigate the effect of the ratio of the contact length between the roll and sample ($l_c$) to the sheet thickness (d) on the formation of shear textures. In order to intensify the shear deformation during asymmetrical rolling, AA 5052 sheet was asymmetrically cold rolled without lubrication by using different roll velocities of upper and lower rolls. Asymmetrical rolling with $l_c$/d=1.8 led to the formation of texture gradients throughout the sheet thickness in which the outer thickness layers depicted shear textures and the center thickness layers displayed a rolling texture. Asymmetrical rolling with $l_c$/d=3.1 gave rise to the formation of shear textures in the whole through-thickness layer. The strain states associated with asymmetrical rolling were investigated by the finite element method (FEM) simulation. FEM results indicated that the evolution of deformation texture in a thickness layer is strongly governed by integrated values of strain rates and along the streamline in the roll gap.

  • PDF

Effect of rolling parameters on the evolution of texture during asymmetrical cold rolling of aluminum sheets (알루미늄 판재의 비대칭 냉간압연 시 집합조직 발달에 미치는 압연변수의 영향)

  • Kang, H.G.;Han, Y.H.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.84-86
    • /
    • 2007
  • Aluminum sheets were asymmetrically cold rolled without lubrication by using different roll velocities of upper and lower rolls in order to intensify the shear deformation. During asymmetrical cold rolling of aluminum sheets, a reduction per a rolling pass, initial sheet thickness, roll diameter, roll velocity ratio were varied to investigate the effect of rolling parameters. The formation of through thickness shear texture was related to the ratio of the contact length between the roll and sample($l_c$) to the sheet thickness(d). The strain states associated with asymmetrical rolling were investigated by the finite element method (FEM) simulation. FEM results indicated that the evolution of deformation texture in a thickness layer is strongly governed by integrated values of strain rates $\dot{\varepsilon}_{13}$ and $\dot{\varepsilon}_{11}$ along the streamline in the roll gap.

  • PDF

Evolution of Strain States and Textures During Rolling with Various Conditions (압연조건에 따른 변형률 상태의 변화와 집합조직의 형성)

  • Kang, H.G;Huh, M.Y
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.479-484
    • /
    • 2006
  • The evolution of strain states and textures during rolling with various conditions was investigated by finite element method (FEM) simulations and measurements of rolling textures. Symmetrical rolling with a high friction gives rise to a strong variation of shear strains in rolled sample leading to the formation of texture gradients throughout the thickness layers. A small variation of shear strains during rolling with a well lubrication condition leads to the formation of a fairly homogeneous rolling texture throughout the sheet thickness. During asymmetrical rolling, a proper control of rolling parameters provides the evolution of a fairly homogeneous shear texture throughout the whole sheet thickness.

Effect of Primary Recrystallization Texture on the Formation of Grain Growth Texture in Aluminum 1050 Sheet (알루미늄 1050계 판재에서 결정립 성장 집합조직에 미치는 재결정 집합조직의 영향)

  • Kim, Hyun-Chul;Kang, Hyung-Gu;Huh, Moo-Young
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.356-362
    • /
    • 2009
  • In order to vary the primary recrystallization textures, AA 1050 sheets were cold rolled in two different manners. Differences in cold rolling schedule gave rise to the formation of different cold rolling textures also leading to the formation of different primary recrystallization textures. Upon annealing for grain growth, changes in microstructure and texture hardly occurred in the sample depicting Cube recrystallization texture, while grain growth was accompanied with the development {001}<100> Cube texture in the sample displaying a recrystallization texture comprising of weak rolling texture components. The selective growth of Cube oriented grains is attributed to the high mobility of their grain boundaries.

Effect of various processes on the evolution of through thickness strain states and textures in aluminum sheets (알루미늄 판재에서 두께층에 따른 변형율 상태와 집합조직의 발달에 미치는 다양한 공정의 영향)

  • Nah, J.J.;Kang, H.G;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.87-90
    • /
    • 2007
  • The evolution of texture and microstructure was tracked for a number of differently cold rolled aluminum sheet and through-thickness layers which were differentiated by different strain states upon preceding deformation. The results substantiate a correlation of deformation texture with the amount of shear applied during cold rolling.

  • PDF