• Title/Summary/Keyword: Atf3

Search Result 108, Processing Time 0.027 seconds

Naringenin-Mediated ATF3 Expression Contributes to Apoptosis in Human Colon Cancer

  • Song, Hun Min;Park, Gwang Hun;Eo, Hyun Ji;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.140-146
    • /
    • 2016
  • Naringenin (NAR) as one of the flavonoids observed in grapefruit has been reported to exhibit an anti-cancer activity. Activating transcription factor 3 (ATF3) is associated with apoptosis in human colon cancer cells. This study was performed to investigate the molecular mechanism by which NAR stimulates ATF3 expression and apoptosis in human colon cancer cells. NAR reduced the cell viability and induced an apoptosis in human colon cancer cells. ATF3 overexpression increased NAR-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by NAR. NAR increased ATF3 expression in both protein and mRNA level, and increased the luciferase activity of ATF3 promoter in a dose-dependent manner. The responsible region for ATF3 transcriptional activation by NAR is located between -317 and -148 of ATF3 promoter. p38 inhibition blocked NAR-mediated ATF3 expression, its promoter activation and apoptosis. The results suggest that NAR induces apoptosis through p38-dependent ATF3 activation in human colon cancer cells.

ATF3 Activates Stat3 Phosphorylation through Inhibition of p53 Expression in Skin Cancer Cells

  • Hao, Zhen-Feng;Ao, Jun-Hong;Zhang, Jie;Su, You-Ming;Yang, Rong-Ya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7439-7444
    • /
    • 2013
  • Aim: ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. Methods: In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Results: Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Conclusion: Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

Kahweol from Coffee Induces Apoptosis by Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Song, Hun Min;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.337-343
    • /
    • 2017
  • Kahweol as a coffee-specific diterpene has been reported to induce apoptosis in human cancer cells. Although some molecular targets for kahweol-mediated apoptosis have been elucidated, the further mechanism for apoptotic effect of kahweol is not known. Activating transcription factor 3 (ATF3) has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which kahweol stimulates ATF3 expression and apoptosis in human colorectal cancer cells. Kahweol increased apoptosis in human colorectal cancer cells. It also increased ATF3 expression through the transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by kahweol was CREB located between -147 to -85 of ATF3 promoter. ATF3 overexpression increased kahweol-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by kahweol. Inhibition of ERK1/2 and $GSK3{\beta}$ blocked kahweol-mediated ATF3 expression. The results suggest that kahweol induces apoptosis through ATF3-mediated pathway in human colorectal cancer cells.

TLR4 Mediates Pneumolysin-Induced ATF3 Expression through the JNK/p38 Pathway in Streptococcus pneumoniae-Infected RAW 264.7 Cells

  • Nguyen, Cuong Thach;Kim, Eun-Hye;Luong, Truc Thanh;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.58-64
    • /
    • 2015
  • Activating transcription factor-3 (ATF3) acts as a negative regulator of cytokine production during Gram-negative bacterial infection. A recent study reported that ATF3 provides protection from Streptococcus pneumoniae infection by activating cytokines. However, the mechanism by which S. pneumoniae induces ATF3 after infection is still unknown. In this study, we show that ATF3 was upregulated via Toll-like receptor (TLR) pathways in response to S. pneumoniae infection in vitro. Induction was mediated by TLR4 and TLR2, which are in the TLR family. The expression of ATF3 was induced by pneumolysin (PLY), a potent pneumococcal virulence factor, via the TLR4 pathway. Furthermore, ATF3 induction is mediated by p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Thus, this study reveals a potential role of PLY in modulating ATF3 expression, which is required for the regulation of immune responses against pneumococcal infection in macrophages.

Curcumin Inhibits Cell Proliferation of Human Colorectal HCT116 Cells through Up-Regulation of Activating Transcription Factor 3 (ATF3) (ATF3 발현을 통한 curcumin의 대장암 세포 성장 저해)

  • Kim, Hyo-Rim;Son, Jung-Bin;Lim, Seung-Hyun;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.492-498
    • /
    • 2012
  • To investigate whether phytochemicals affect cancer cell viability, human colorectal HCT116 cells were treated with four different phytochemicals. Among these phytochemicals, curcumin is the strongest inhibitor of cell proliferation. In addition, it decreased cell viability in a dose-dependent manner. To unveil the molecular mechanisms involved in the inhibition of cell proliferation by curcumin, we carried out oligo DNA microarray analysis. We found that 137 genes were up-regulated more than 2-fold, and 141 genes were down-regulated more than 2-fold by 25 ${\mu}M$ curcumin treatment. Among the up-regulated genes, we selected 3 genes (ATF-3, GADD45A, and NR4A1) to confirm microarray data. The results of RT-PCR strongly agreed with those of the microarray data. Among the phytochemicals used in this study, curcumin is the strongest inducer of ATF3 expression, and increased ATF3 expression in a dose-dependent manner. Interestingly, FACS analysis showed that the inhibition of cell growth by curcumin was recovered by ATF3-siRNA transfection. Finally, we detected the changes of gene expression by ectopic expression of ATF3. The results indicated that many up-regulated genes were related to apoptosis. Overall, these results suggest that ATF3 may play an important role in the anti-proliferative activity of curcumin in human colorectal cancer cells.

ATF3 Mediates Anti-Cancer Activity of Trans-10, cis-12-Conjugated Linoleic Acid in Human Colon Cancer Cells

  • Kim, Kui-Jin;Lee, Jihye;Park, Yeonhwa;Lee, Seong-Ho
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.134-140
    • /
    • 2015
  • Conjugated linoleic acids (CLA) are a family of isomers of linoleic acid. CLA increases growth arrest and apoptosis of human colorectal cancer cells through an isomer-specific manner. ATF3 belongs to the ATF/CREB family of transcription factors and is associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which t10, c12-CLA stimulates ATF3 expression and apoptosis in human colorectal cancer cells. t10, c12-CLA increased an apoptosis in human colorectal cancer cells in dose dependent manner. t10, c12-CLA induced ATF3 mRNA and luciferase activity of ATF3 promoter in a dose-dependent manner. The responsible region for ATF3 transcriptional activation by t10, c12-CLA is located between -147 and -1850 of ATF3 promoter. mRNA stability of ATF3 was not affected by t10, c12-CLA treatment. t10, c12-CLA increases $GSK3{\beta}$ expression and suppresses IGF-1-stimulated phosphorylation of Akt. The knockdown of ATF3 suppressed expression of $GSK3{\beta}$ and NAG-1 and PARP cleavage. The results suggest that t10, c12-CLA induces apoptosis through ATF3-mediated pathway in human colorectal cancer cells.

Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages

  • Bae, Young-An;Cheon, Hyae Gyeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.415-424
    • /
    • 2016
  • Berberine is an isoquinoline alkaloid found in Rhizoma coptidis, and elicits anti-inflammatory effects through diverse mechanisms. Based on previous reports that activating transcription factor-3 (ATF-3) acts as a negative regulator of LPS signaling, the authors investigated the possible involvement of ATF-3 in the anti-inflammatory effects of berberine. It was found berberine concentration-dependently induced the expressions of ATF-3 at the mRNA and protein levels and concomitantly suppressed the LPS-induced productions of proinflammatory cytokines ($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$). In addition, ATF-3 knockdown abolished the inhibitory effects of berberine on LPS-induced proinflammatory cytokine production, and prevented the berberine-induced suppression of MAPK phosphorylation, but had little effect on AMPK phosphorylation. On the other hand, the effects of berberine, that is, ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation, were prevented by AMPK knockdown, suggesting ATF-3 induction occurs downstream of AMPK activation. The in vivo administration of berberine to mice with LPS-induced endotoxemia increased ATF-3 expression and AMPK phosphorylation in spleen and lung tissues, and concomitantly reduced the plasma and tissue levels of proinflammatory cytokines. These results suggest berberine has an anti-inflammatory effect on macrophages and that this effect is attributable, at least in part, to pathways involving AMPK activation and ATF-3 induction.

Caffeic Acid Phenethyl Ester Induces the Expression of NAG-1 via Activating Transcription Factor 3 (ATF3를 통한 caffeic acid phenethyl ester에 의한 NAG-1 유전자의 발현 증가)

  • Park, Min-Hee;Chung, Chungwook;Lee, Seong Ho;Baek, Seung Joon;Kim, Jong Sik
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a transforming growth factor beta (TGF-${\beta}$) superfamily gene associated with pro-apoptotic and anti-tumorigenic activities. In the present study, we investigated if caffeic acid phenethyl ester (CAPE) derived from propolis could induce the expression of anti-tumorigenic gene NAG-1. Our results indicate that CAPE significantly induced NAG-1 expression in a time- and concentration-dependent manner in HCT116 cells. We also found that CAPE induced NAG-1 expression in a concentration-dependent manner in another human colorectal cancer cell line, LOVO. In addition, CAPE triggered apoptosis, which was detected with Western blot analysis using poly-(ADP-ribose) polymerase antibody. NAG-1 induction by CAPE was not dependent on transcription factor p53, which was confirmed with Western blot analysis using p53 null HCT116 cells. The luciferase assay results indicated that the new cis-elements candidates were located between -474 and -1,086 of the NAG-1 gene promoter. CAPE dramatically induced activating transcription factor 3 (ATF3) expression, but not cAMP response element-binding protein (CREB), which shares the same binding sites with ATF3. The co-transfection experiment with pCG-ATF3 and pCREB showed that only ATF3 was associated with NAG-1 up-regulation by CAPE, whereas CREB had no effect. In conclusion, the results suggest that CAPE could induce the expression of anti-tumorigenic gene NAG-1 mainly through ATF3.

Chelidonium majus Induces Apoptosis of Human Ovarian Cancer Cells via ATF3-Mediated Regulation of Foxo3a by Tip60

  • Shen, Lei;Lee, Soon;Joo, Jong Cheon;Hong, Eunmi;Cui, Zhen Yang;Jo, Eunbi;Park, Soo Jung;Jang, Hyun-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.493-503
    • /
    • 2022
  • Forkhead transcription factor 3a (Foxo3a) is believed to be a tumor suppressor as its inactivation leads to cell transformation and tumor development. However, further investigation is required regarding the involvement of the activating transcription factor 3 (ATF3)-mediated Tat-interactive protein 60 (Tip60)/Foxo3a pathway in cancer cell apoptosis. This study demonstrated that Chelidonium majus upregulated the expression of ATF3 and Tip60 and promoted Foxo3a nuclear translocation, ultimately increasing the level of Bcl-2-associated X protein (Bax) protein. ATF3 overexpression stimulated Tip60 expression, while ATF3 inhibition by siRNA repressed Tip60 expression. Furthermore, siRNA-mediated Tip60 inhibition significantly promoted Foxo3a phosphorylation, leading to blockade of Foxo3a translocation into the nucleus. Thus, we were able to deduce that ATF3 mediates the regulation of Foxo3a by Tip60. Moreover, siRNA-mediated Foxo3a inhibition suppressed the expression of Bax and subsequent apoptosis. Taken together, our data demonstrate that Chelidonium majus induces SKOV-3 cell death by increasing ATF3 levels and its downstream proteins Tip60 and Foxo3a. This suggests a potential therapeutic role of Chelidonium majus against ovarian cancer.

Anti-Cancer Activity of the Flower Bud of Sophora japonica L. through Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells

  • Lee, Jin Wook;Park, Gwang Hun;Eo, Hyun Ji;Song, Hun Min;Kim, Mi Kyoung;Kwon, Min Ji;Koo, Jin Suk;Lee, Jeong Rak;Lee, Man Hyo;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.297-304
    • /
    • 2015
  • The flower buds of Sophora japonica L (SF), as a well-known traditional Chinese medicinal herb, have been used to treat bleeding-related disorders such as hematochezia, hemorrhoidal bleeding, dysfunctional uterine bleeding, and diarrhea. However, no specific anti-cancer effect and its molecular mechanism of SF have been described. Thus, we performed in vitro study to investigate if treatment of SF affects activating transcription factor 3 (ATF3) expression and ATF3-mediated apoptosis in human colorectal cancer cells. The effects of SF on cell viability and apoptosis were measured by MTT assay and Western blot analysis against cleaved poly (ADP-ribose) polymerase (PARP). ATF3 activation induced by SF was evaluated using Western blot analysis, RT-PCR and ATF3 promoter assay. SF treatment caused decrease of cell viability and increase of apoptosis in a dose-dependent manner in HCT116 and SW480 cells. Exposure of SF activated the levels of ATF3 protein and mRNA via transcriptional regulation in HCT116 and SW480 cells. Inhibition of extracellular signal-regulated kinases (ERK) 1/2 by PD98059 and p38 by SB203580 attenuated SF-induced ATF3 expression and transcriptional activation. Ectopic ATF3 overexpression accelerated SF-induced cleavage of PARP. These findings suggest that SF-mediated apoptosis may be the result of ATF3 expression through ERK1/2 and p38-mediated transcriptional activation.