• Title/Summary/Keyword: Atmosphericpressure

Search Result 2, Processing Time 0.017 seconds

Generation of Low Temperature Plasma and Its Application (저온 플라즈마 발생과 응용)

  • Lee, Bong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.413-416
    • /
    • 2002
  • It was reported that low temperature plasma developed by our group was apparently homogeneous and stable at atmospheric pressure, and was generated if the alumina was used as a dielectric insulating material and Ar gas as a plasma gas. This is a structure in which the dielectric materials are covered and arranged in parallel in the one side of electrode. In this experiment, we discovered that dielectric material was important to generate normal electric discharge. To examine the effect of dielectric material on the electric discharge characteristic, the voltage and current of the plasma was measured and the electrical effect of dielectric material was examined. Also, it was applied to an etching of tin oxide films.

Output Characteristics of XeF$(C\rightarrowA$ Laser for the variation of Xe concentration under the pressures of broad region (넓은 범위의 압력에서 Xe 농도 변화에 대한 XeF$(C\rightarrowA$ 레이저의 출력특성)

  • 류한용;이주희
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.214-221
    • /
    • 1995
  • When the broad pressure region (0.5-3.5 atm) of laser media is pumped by 70 ns [FWHM] electronbeam accelerator (800 kV, 21 kA), the correlation between free-runnuing XeF$(C\rightarrowA$ excimer laser output and Xe concentration are studied. The resonator consisted of dichroic output coupler, and the laser output is optimized with laser media $(Xe/F_2/Ar)$ as functions of total pressure and gas mixing ratio. Under the condition of F2 0.46% fixed, the laser intrinsic efficiencies of 0.38%, 1.03%, and 0.29% are obtained at 1. 2, and 3 atm, respectively. So then the peaks of laser intrinsic efficiency occured to the higher Xe concentration with decreasing total gas pressure. By analyzing the kinetics for the $XeF^*(C)$ formation efficiency and XeF$(C\rightarrowA$ laser extraction efficiency the dependence of Xe concentration on their correlation is explained. As the results we propose efficient operation of an atmosphericpressure XeF$(C\rightarrowA$ laser. laser.

  • PDF