• Title/Summary/Keyword: Attack Mitigation

Search Result 47, Processing Time 0.024 seconds

A DDoS Attack Test, Analysis and Mitigation Method in Real Networks (DDoS 공격 실험 결과, 분석 및 피해 완화 방안)

  • Yang, Jin-Seok;Kim, Hyoung-Chun;Chung, Tai-Myoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.3
    • /
    • pp.125-132
    • /
    • 2013
  • In this paper, We send DDoS(Distributed Denial of Service) attack traffic to real homepages in real networks. We analyze the results of DDoS attack and propose mitigation method against DDoS Attacks. In order to analyze the results of DDoS Attacks, We group three defense level by administrative subjects: Top level defense, Middle level defense, Bottom level defense. Also We group four attack methods by feature. We describe the results that average of attack success rate on defense level and average of attack success rate on attack categories about 48ea homepages and 2ea exceptional cases. Finally, We propose mitigation method against DDoS attack.

A Blockchain-enabled Multi-domain DDoS Collaborative Defense Mechanism

  • Huifen Feng;Ying Liu;Xincheng Yan;Na Zhou;Zhihong Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.916-937
    • /
    • 2023
  • Most of the existing Distributed Denial-of-Service mitigation schemes in Software-Defined Networking are only implemented in the network domain managed by a single controller. In fact, the zombies for attackers to launch large-scale DDoS attacks are actually not in the same network domain. Therefore, abnormal traffic of DDoS attack will affect multiple paths and network domains. A single defense method is difficult to deal with large-scale DDoS attacks. The cooperative defense of multiple domains becomes an important means to effectively solve cross-domain DDoS attacks. We propose an efficient multi-domain DDoS cooperative defense mechanism by integrating blockchain and SDN architecture. It includes attack traceability, inter-domain information sharing and attack mitigation. In order to reduce the length of the marking path and shorten the traceability time, we propose an AS-level packet traceability method called ASPM. We propose an information sharing method across multiple domains based on blockchain and smart contract. It effectively solves the impact of DDoS illegal traffic on multiple domains. According to the traceability results, we designed a DDoS attack mitigation method by replacing the ACL list with the IP address black/gray list. The experimental results show that our ASPM traceability method requires less data packets, high traceability precision and low overhead. And blockchain-based inter-domain sharing scheme has low cost, high scalability and high security. Attack mitigation measures can prevent illegal data flow in a timely and efficient manner.

Theoretical Performance Analysis between Attack Prevention Schemes and Attack Mitigation Schemes (공격차단 기법과 공격경감 기법 간 이론적 성능 분석)

  • Ko Kwang-Sun;Eom Young-Ik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.84-92
    • /
    • 2006
  • To defeat abnormal traffic driven by DoS (Denial-of-Service) or DDoS (Distributed DoS), there has been a variety of researches or studies in a few decades. In this paper, we present the results of theoretical performance analysis between attack prevention schemes and attack mitigation schemes. The former is a scheme that prevents abnormal incoming traffic from forwarding into a specific network based on filtering rules, and the latter is a scheme that makes some perimeter or intermediate routers, which exist on the traffic forwarding path, prevent abnormal traffic based on their own abnormal traffic information, or that mitigates abnormal traffic by using quality-of-service mechanisms at the gateway of the target network. The aspects of theoretical performance analysis are defined as the transit rates of either normal traffic or false-positive traffic after an attack detection routine processes its job, and we also present the concrete network bandwidth rates to control incoming traffic.

New Distributed SDN Framework for Mitigating DDoS Attacks (DDoS 공격 완화를 위한 새로운 분산 SDN 프레임워크)

  • Alshehhi, Ahmed;Yeun, Chan Yeob;Damiani, Ernesto
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1913-1920
    • /
    • 2017
  • Software Defined Networking creates totally new concept of networking and its applications which is based on separating the application and control layer from the networking infrastructure as a result it yields new opportunities in improving the network security and making it more automated in robust way, one of these applications is Denial of Service attack mitigation but due to the dynamic nature of Denial of Service attack it would require dynamic response which can mitigate the attack with the minimum false positive. In this paper we will propose a new mitigation Framework for DDoS attacks using Software Defined Networking technology to protect online services e.g. websites, DNS and email services against DoS and DDoS attacks.

A Study on DDoS Attack Mitigation Technique in MANET (MANET 환경에서 DDoS 공격 완화 기법에 관한 연구)

  • Yang, Hwan-Seok;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.12 no.1
    • /
    • pp.3-8
    • /
    • 2012
  • MANET composed wireless nodes without fixed infrastructure provides high flexibility, but it has weak disadvantage to various attack. It has big weakness to DDoS attack because every node perform packet forwarding especially. In this paper, packet transmission information control technique is proposed to reduce damage of DDoS attack in MANET and search location of attacker when DDoS attacks occur. Hierarchical structure using gateway node is adopted for protect a target of attack in this study. Gateway node in cluster is included like destination nodes surely when source nodes route path to destination nodes and it protects destination nodes. We confirmed efficiency by comparing proposed method in this study with CUSUM and measured the quantity consumed memory of cluster head to evaluate efficiency of information control using to location tracing.

A Moving Window Principal Components Analysis Based Anomaly Detection and Mitigation Approach in SDN Network

  • Wang, Mingxin;Zhou, Huachun;Chen, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3946-3965
    • /
    • 2018
  • Network anomaly detection in Software Defined Networking, especially the detection of DDoS attack, has been given great attention in recent years. It is convenient to build the Traffic Matrix from a global view in SDN. However, the monitoring and management of high-volume feature-rich traffic in large networks brings significant challenges. In this paper, we propose a moving window Principal Components Analysis based anomaly detection and mitigation approach to map data onto a low-dimensional subspace and keep monitoring the network state in real-time. Once the anomaly is detected, the controller will install the defense flow table rules onto the corresponding data plane switches to mitigate the attack. Furthermore, we evaluate our approach with experiments. The Receiver Operating Characteristic curves show that our approach performs well in both detection probability and false alarm probability compared with the entropy-based approach. In addition, the mitigation effect is impressive that our approach can prevent most of the attacking traffic. At last, we evaluate the overhead of the system, including the detection delay and utilization of CPU, which is not excessive. Our anomaly detection approach is lightweight and effective.

Policy Based DDoS Attack Mitigation Methodology (정책기반의 분산서비스거부공격 대응방안 연구)

  • Kim, Hyuk Joon;Lee, Dong Hwan;Kim, Dong Hwa;Ahn, Myung Kil;Kim, Yong Hyun
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.596-605
    • /
    • 2016
  • Since the Denial of Service Attack against multiple targets in the Korean network in private and public sectors in 2009, Korea has spent a great amount of its budget to build strong Internet infrastructure against DDoS attacks. As a result of the investments, many major governments and corporations installed dedicated DDoS defense systems. However, even organizations equipped with the product based defense system often showed incompetency in dealing with DDoS attacks with little variations from known attack types. In contrast, by following a capacity centric DDoS detection method, defense personnel can identify various types of DDoS attacks and abnormality of the system through checking availability of service resources, regardless of the types of specific attack techniques. Thus, the defense personnel can easily derive proper response methods according to the attacks. Deviating from the existing DDoS defense framework, this research study introduces a capacity centric DDoS detection methodology and provides methods to mitigate DDoS attacks by applying the methodology.

Cyber attack taxonomy for digital environment in nuclear power plants

  • Kim, Seungmin;Heo, Gyunyoung;Zio, Enrico;Shin, Jinsoo;Song, Jae-gu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.995-1001
    • /
    • 2020
  • With the development of digital instrumentation and control (I&C) devices, cyber security at nuclear power plants (NPPs) has become a hot issue. The Stuxnet, which destroyed Iran's uranium enrichment facility in 2010, suggests that NPPs could even lead to an accident involving the release of radioactive materials cyber-attacks. However, cyber security research on industrial control systems (ICSs) and supervisory control and data acquisition (SCADA) systems is relatively inadequate compared to information technology (IT) and further it is difficult to study cyber-attack taxonomy for NPPs considering the characteristics of ICSs. The advanced research of cyber-attack taxonomy does not reflect the architectural and inherent characteristics of NPPs and lacks a systematic countermeasure strategy. Therefore, it is necessary to more systematically check the consistency of operators and regulators related to cyber security, as in regulatory guide 5.71 (RG.5.71) and regulatory standard 015 (RS.015). For this reason, this paper attempts to suggest a template for cyber-attack taxonomy based on the characteristics of NPPs and exemplifies a specific cyber-attack case in the template. In addition, this paper proposes a systematic countermeasure strategy by matching the countermeasure with critical digital assets (CDAs). The cyber-attack cases investigated using the proposed cyber-attack taxonomy can be used as data for evaluation and validation of cyber security conformance for digital devices to be applied, and as effective prevention and mitigation for cyber-attacks of NPPs.

Utilizing OpenFlow and sFlow to Detect and Mitigate SYN Flooding Attack

  • Nugraha, Muhammad;Paramita, Isyana;Musa, Ardiansyah;Choi, Deokjai;Cho, Buseung
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.988-994
    • /
    • 2014
  • Software Defined Network (SDN) is a new technology in computer network area which enables user to centralize control plane. The security issue is important in computer network to protect system from attackers. SYN flooding attack is one of Distributed Denial of Service attack methods which are popular to degrade availability of targeted service on Internet. There are many methods to protect system from attackers, i.e. firewall and IDS. Even though firewall is designed to protect network system, but it cannot mitigate DDoS attack well because it is not designed to do so. To improve performance of DDOS mitigation we utilize another mechanism by using SDN technology such as OpenFlow and sFlow. The methodology of sFlow to detect attacker is by capturing and sum cumulative traffic from each agent to send to sFlow collector to analyze. When sFlow collector detect some traffics as attacker, OpenFlow controller will modify the rule in OpenFlow table to mitigate attacks by blocking attack traffic. Hence, by combining sum cumulative traffic use sFlow and blocking traffic use OpenFlow we can detect and mitigate SYN flooding attack quickly and cheaply.