• Title/Summary/Keyword: Attribute Weighting

Search Result 30, Processing Time 0.022 seconds

An Information-theoretic Approach for Value-Based Weighting in Naive Bayesian Learning (나이브 베이시안 학습에서 정보이론 기반의 속성값 가중치 계산방법)

  • Lee, Chang-Hwan
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.285-291
    • /
    • 2010
  • In this paper, we propose a new paradigm of weighting methods for naive Bayesian learning. We propose more fine-grained weighting methods, called value weighting method, in the context of naive Bayesian learning. While the current weighting methods assign a weight to an attribute, we assign a weight to an attribute value. We develop new methods, using Kullback-Leibler function, for both value weighting and feature weighting in the context of naive Bayesian. The performance of the proposed methods has been compared with the attribute weighting method and general naive bayesian. The proposed method shows better performance in most of the cases.

Mutual Information in Naive Bayes with Kernel Density Estimation (나이브 베이스에서의 커널 밀도 측정과 상호 정보량)

  • Xiang, Zhongliang;Yu, Xiangru;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.86-88
    • /
    • 2014
  • Naive Bayes (NB) assumption has some harmful effects in classification to the real world data. To relax this assumption, we now propose approach called Naive Bayes Mutual Information Attribute Weighting with Smooth Kernel Density Estimation (NBMIKDE) that combine the smooth kernel for attribute and attribute weighting method based on mutual information measure.

  • PDF

Naive Bayes Approach in Kernel Density Estimation (커널 밀도 측정에서의 나이브 베이스 접근 방법)

  • Xiang, Zhongliang;Yu, Xiangru;Al-Absi, Ahmed Abdulhakim;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.76-78
    • /
    • 2014
  • Naive Bayes (NB, for shortly) learning is more popular, faster and effective supervised learning method to handle the labeled datasets especially in which have some noises, NB learning also has well performance. However, the conditional independent assumption of NB learning imposes some restriction on the property of handling data of real world. Some researchers proposed lots of methods to relax NB assumption, those methods also include attribute weighting, kernel density estimating. In this paper, we propose a novel approach called NB Based on Attribute Weighting in Kernel Density Estimation (NBAWKDE) to improve the NB learning classification ability via combining kernel density estimation and attribute weighting.

  • PDF

Gradient Descent Approach for Value-Based Weighting (점진적 하강 방법을 이용한 속성값 기반의 가중치 계산방법)

  • Lee, Chang-Hwan;Bae, Joo-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.381-388
    • /
    • 2010
  • Naive Bayesian learning has been widely used in many data mining applications, and it performs surprisingly well on many applications. However, due to the assumption that all attributes are equally important in naive Bayesian learning, the posterior probabilities estimated by naive Bayesian are sometimes poor. In this paper, we propose more fine-grained weighting methods, called value weighting, in the context of naive Bayesian learning. While the current weighting methods assign a weight to each attribute, we assign a weight to each attribute value. We investigate how the proposed value weighting effects the performance of naive Bayesian learning. We develop new methods, using gradient descent method, for both value weighting and feature weighting in the context of naive Bayesian. The performance of the proposed methods has been compared with the attribute weighting method and general Naive bayesian, and the value weighting method showed better in most cases.

Acoustic Signal based Optimal Route Selection Problem: Performance Comparison of Multi-Attribute Decision Making methods

  • Borkar, Prashant;Sarode, M.V.;Malik, L. G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.647-669
    • /
    • 2016
  • Multiple attribute for decision making including user preference will increase the complexity of route selection process. Various approaches have been proposed to solve the optimal route selection problem. In this paper, multi attribute decision making (MADM) algorithms such as Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP) method and Total Order Preference by Similarity to the Ideal Solution (TOPSIS) methods have been proposed for acoustic signature based optimal route selection to facilitate user with better quality of service. The traffic density state conditions (very low, low, below medium, medium, above medium, high and very high) on the road segment is the occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) is considered as one of the attribute in decision making process. The short-term spectral envelope features of the cumulative acoustic signals are extracted using Mel-Frequency Cepstral Coefficients (MFCC) and Adaptive Neuro-Fuzzy Classifier (ANFC) is used to model seven traffic density states. Simple point method and AHP has been used for calculation of weights of decision parameters. Numerical results show that WPM, AHP and TOPSIS provide similar performance.

A Data-Mining-based Methodology for Military Occupational Specialty Assignment (데이터 마이닝 기반의 군사특기 분류 방법론 연구)

  • 민규식;정지원;최인찬
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • In this paper, we propose a new data-mining-based methodology for military occupational specialty assignment. The proposed methodology consists of two phases, feature selection and man-power assignment. In the first phase, the k-means partitioning algorithm and the optimal variable weighting algorithm are used to determine attribute weights. We address limitations of the optimal variable weighting algorithm and suggest a quadratic programming model that can handle categorical variables and non-contributory trivial variables. In the second phase, we present an integer programming model to deal with a man-power assignment problem. In the model, constraints on demand-supply requirements and training capacity are considered. Moreover, the attribute weights obtained in the first phase for each specialty are used to measure dissimilarity. Results of a computational experiment using real-world data are provided along with some analysis.

A Multi-attribute Dispatching Rule Using A Neural Network for An Automated Guided Vehicle (신경망을 이용한 무인운반차의 다요소배송규칙)

  • 정병호
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.3
    • /
    • pp.77-89
    • /
    • 2000
  • This paper suggests a multi-attribute dispatching rule for an automated guided vehicle(AGV). The attributes to be considered are the number of queues in outgoing buffers of workstations, distance between an idle AGV and a workstation with a job waiting for the service of vehicle, and the number of queues in input buffers of the destination workstation of a job. The suggested rule is based on the simple additive weighting method using a normalized score for each attribute. A neural network approach is applied to obtain an appropriate weight vector of attributes based on the current status of the manufacturing system. Backpropagation algorithm is used to train the neural network model. The proposed dispatching rules and some single attribute rules are compared and analyzed by simulation technique. A number of simulation runs are executed under different experimental conditions to compare the several performance measures of the suggested rules and some existing single attribute dispatching rules each other.

  • PDF

Application of Multi-Attribute Utility Analysis for the Decision Support of Countermeasures in Early Phase of a Nuclear Emergency (원자력 사고시 초기 비상대응 결정지원을 위한 다속성 효용 분석법의 적용)

  • Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Jeong, Hyo-Joon;Han, Moon-Hee;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.65-71
    • /
    • 2004
  • A multi-attribute utility analysis was investigated as a tool for the decision support of countermeasures in early phase of a nuclear accident. The utility function of attributes was assumed to be the second order polynomial expressions, and the weighting constant of attributes was determined using a swing weighting method. Because the main objective of this study focuses on the applicability of a multi-attribute utility analysis as a tool for the decision support of countermeasures in early phase of a nuclear accident, less quantifiable attributes were not included due to lack of information. In postulated accidental scenarios for the application of the designed methodology, the variation of the numerical values of total utility for the considered actions, e.g. sheltering, evacuation and no action, was investigated according to the variation of attributes. As a result, it was shown that the numerical values of total utility for the actions are distinctly different depending on the exposure dose and monetary value of dose. As increasing in both attributes, the rank of the numerical values of total utility increased for evacuation, which is more extreme action than for sheltering, while that of no action decreased. As expected probability of high dose is higher, the break-even values for the monetary value of dose, which are the monetary value of dose when the ranking of actions is changed, were lower. In audition, as aversion psychology for dose is higher, the break-even values for dose were lower.

Developing APC for Weighting Quality Attributes (품질 속성의 가중치 선정을 위한 APC에 관한 연구)

  • Song, Hae Geun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.3
    • /
    • pp.8-16
    • /
    • 2013
  • Determining relative importance among many quality attributes under financial constraints is an important task. The weighted value of an attribute particularly in QFD, will influence on engineering characteristics and this will eventually influence the whole manufacturing process such as parts deployment, process planning, and production planning. Several scholars have suggested weighting formulas using CSC (Customer Satisfaction Coefficient) in the Kano model. However, previous research shows that the validity of the CSC approaches has not been proved systematically. The aim of the present study is to address drawbacks of CSC and to develop APC (Average Potential Coefficient), a new approach for weighting of quality attributes. For this, the current study investigated 33 quality attributes of e-learning and conducted a survey of 375 university students for the results of APC, the Kano model, and the direct importance of the quality attributes. The results show that the proposed APC is better than other approaches based on the correlation analysis with the results of direct importance. An analysis of e-leaning's quality perceptions using the Kano model and suggestions for improving e-learning's service quality are also included in this study.

A Method for Generating and Evaluating Multi-Attribute Proposals in Automated Negotiation Systems (자동협상시스템 구현을 위한 다속성 협상안 생성 및 평가 방법에 관한 연구)

  • Choi, Hyung-Rim;Kim, Hyun-Soo;Hong, Soon-Goo;Park, Young-Jae;Park, Yong-Sung;Yoo, Dong-Yeol
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.35-51
    • /
    • 2005
  • The wide spread of Internet and rapid development of e-commerce-related technology have brought sweeping changes on the traditional commercial transactions. Accordingly, many efforts to transform these transactions electronically under e-commerce environment have been carried out. As most transactions are usually made through negotiations, the function of automated negotiation is also required in the e-commerce environment. This paper aims to develop the method to generate and evaluate the multi-attribute negotiation proposals for automated negotiation systems. To this end the related articles are reviewed and the method dealing with e-negotiation strategy is suggested. In this method, the seller generates his or her own negotiation proposal and then evaluates the buyer's proposal based on SAW (Simple Additive Weighting Method), one of the MADM (Multi Attribute Decision Making) methods. To verify the suggested method, a case study is conducted in the order-based manufacturing environment.

  • PDF