• Title/Summary/Keyword: Austenitic Stainless Steel

Search Result 409, Processing Time 0.032 seconds

Nitrogen Permeation Treatment of Duplex and Austenitic Stainless Steels

  • Yoo, D.K.;Joo, D.W.;Kim, Insoo;Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.57-64
    • /
    • 2002
  • The 22%Cr-5%Ni-3%Mo duplex and 18%Cr-8%Ni austenitic stainless steels have been nitrogen permeated under the $1Kg/cm^2$ nitrogen gas atmosphere at the temperature range of $1050^{\circ}C{\sim}1150^{\circ}C$. The nitrogen-permeated duplex and austenitic stainless steels showed the gradual decrease in hardness with increasing depth below surface. The duplex stainless steel showed nitrogen pearlite at the outmost surface and austenite single phase in the center after nitrogen permeation treatment, while the obvious microstructural change was not observed for the nitrogen-permeated austenitic stainless steel. After solution annealing the nitrogen-permeated stainless steels(NPSA treatment) at $1200^{\circ}C$ for 10 hours, the hardness of the duplex and austenitic stainless steels was constant through the 2 mm thickness of the specimen, and the ${\alpha}+{\gamma}$ phase of duplex stainless steel changed to austenite single phase. Tensile strengths and elongations of the NPSA-treated duplex stainless steel remarkably increased compared to those of solution annealed (SA) duplex stainless steel due to the solution strengthening effect of nitrogen and the phase change from a mixture of ferrite and austenite to austenite single phase, while the NP-treated austenitic stainless steel displayed the lowest value in elongation due to inhomogeneous deformation by the hardness difference between surface and interior.

Effect of Gas Nitriding Characteristics on the Mechanical Properties after Pre-Heat Treatment of Stainless Steels (스테인리스강의 기계적 성질에 미치는 예비처리 후 가스질화조건의 영향)

  • Kim, Y.H.;Kim, H.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.142-149
    • /
    • 2010
  • Austenitic stainless steel is more or less difficult with conventional gas nitriding treatment, but it can be nitrided after appropriate pre-heat treatment. The pretreatment was more effective upon nitriding for austenitic stainless steel than martensitic stainless steel. Both thickness and microhardness measurements indicated that effect of the nitriding treatment was more sensitive in austenitic stainless steel than martensitic stainless steel with nitriding time. Fatigue strength was most increased with SACM 645 steel among three steels.

Effect of Seawater Temperature on the Cyclic Potentiodynamic Polarization Characteristics and Microscopic Analysis on Damage Behavior of Super Austenitic Stainless Steel (슈퍼오스테나이트 스테인리스강의 순환동전위 분극특성에 미치는 해수온도의 영향과 손상 거동에 관한 미시적 분석)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.412-425
    • /
    • 2021
  • Because austenitic stainless steel causes localized corrosion such as pitting and crevice corrosion in environments containing chlorine, corrosion resistance is improved by surface treatment or changes of the alloy element content. Accordingly, research using cyclic potentiodynamic polarization experiment to evaluate the properties of the passivation film of super austenitic stainless steel that improved corrosion resistance is being actively conducted. In this investigation, the electrochemical properties of austenitic stainless steel and super austenitic stainless steel were compared and analyzed through cyclic potentiodynamic polarization experiment with varying temperatures. Repassivation properties were not observed in austenitic stainless steels at all temperature conditions, but super austenitic stainless steels exhibited repassivation behaviors at all temperatures. This is expressed as α values using a relational formula comparing the localized corrosion rate and general corrosion rate. As the α values of UNS S31603 decreased with temperature, the tendency of general corrosion was expected to be higher, and the α value of UNS N08367 increased with increasing temperatures, so it is considered that the tendency of localized corrosion was dominant.

Irradiation-induced BCC-phase formation and magnetism in a 316 austenitic stainless steel

  • Xu, Chaoliang;Liu, Xiangbing;Xue, Fei;Li, Yuanfei;Qian, Wangjie;Jia, Wenqing
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.610-613
    • /
    • 2020
  • Specimens of austenitic stainless steel were irradiated with 6 MeV Xe ions to two doses of 7 and 15 dpa at room temperature and 300 ℃ respectively. Then partial irradiated specimens were subsequently thermally annealed at 550 ℃. Irradiation-induced BCC-phase formation and magnetism were analyzed by grazing incidence X-ray diffraction (GIXRD) and vibrating sample magnetometer (VSM). It has been shown that irradiation damage level, irradiation temperature and annealing temperature have significant effect on BCC-phase formation. This BCC-phase changes the magnetic behavior of austenitic stainless steel. The stress relief and compositional changes in matrix are the driving forces for BCC-phase formation in austenitic stainless steel during ion irradiation.

Distinct properties of tungsten austenitic stainless alloy as a potential nuclear engineering material

  • Salama, E.;Eissa, M.M.;Tageldin, A.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.784-791
    • /
    • 2019
  • In the present study, a series of tungsten austenitic stainless steel alloys have been developed by interchanging the molybdenum in standard SS316 by tungsten. This was done to minimize the long-life residual activation occurred in molybdenum and nickel after decommissioning of the power plant. The microstructure and mechanical properties of the prepared alloys are determined. For the sake of increasing multifunction property of such series of tungsten-based austenitic stainless steel alloys, gamma shielding properties were studied experimentally by means of NaI(Tl) detector and theoretically calculated by using the XCOM program. Moreover, fast neutrons macroscopic removal cross-section been calculated. The obtained combined mechanical, structural and shielding properties indicated that the modified austenitic stainless steel sample containing 1.79% tungsten and 0.64% molybdenum has preferable properties among all other investigated samples in comparison with the standard SS316. These properties nominate this new composition in several nuclear application domains such as, nuclear shielding domain.

Formation Mechanism of Surface Crack and Its Control on Continuously Cast Slabs of Nb-containing Austenitic Stainless Steel (Nb 첨가 오스테나이트계 스테인레스강의 연속주조시 표면크랙 형성기구 및 제어)

  • Shim, Sang-Dae;Kim, Sun-Koo
    • Journal of Korea Foundry Society
    • /
    • v.21 no.5
    • /
    • pp.280-285
    • /
    • 2001
  • Nb-containing austenitic stainless steel is widely used as exhaust frame and diffuser assembly in power plant. However, this steel is known to be difficult to produce by the continuous casting process due to the surface cracks. Therefore, the continuous casting technology was developed for the prevention of the surface cracks on CC slabs. Precipitates and the analysis of heat trasfer in a slab were investigated in order to find out the formation mechanism of surface cracks on cc slabs It was found that surface cracks are occurred due to the NbC precipitates, which are formed along the grain boundaries around $800^{\circ}C$. The secondary cooling pattern has been developed to produce the defect free CC slabs of Nb-containing austenitic stainless steel.

  • PDF

Study on the Disbonding of Stainless Steel Overlay Welded Metal(Report 2) - A Metallurgical Study on PWHT of Overlaid Austenitic Stainless Steel Weld Metals - (스테인레스강 Overlay 용접부의 Disbonding 에 관한 연구(2) - 오스테나이트계 스테인레스강 오버레이 용접금속의 PWHT에 관한 야금학적 고찰 -)

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.4-17
    • /
    • 1984
  • Overlaid weld metals of austenitic stainless steel in a pressure vessel of power reactor are usually post-weld heated for a long period of time after welding. The PWHT is considered as a kind of sensitizing and it is important to check the soundness of the weld metal after PWHT, especially about the precipitation of carbides. The purpose of this report is to obtain information on the relation between the change of microstructure and Post-Weld Heat Treatment in the overlaid weld metals. Metallurgical aspects of the problem on austenitic stainless steel heated at $625^{\circ}C$, $670^{\circ}C$, $720^{\circ}C$ and $760^{\circ}C$ for 3, 10, 30, 100 and 300 hours have been investigated by means of optical-micrography, micro-hardness measurement, scanning electron microscope and electron-probe micro analysis. From the results obtained, the following conclusions are drawn; 1) The PWHT above $625^{\circ}C$ for a long time causes a diffusion of carbon atoms from low alloy steel into stainless steel, and consequently carbon is highly concentrated at the boundary layer of stainless steel. 2) C in ferritic steel migrated to austenitic steel and carbides precipitated in austenitic steel along fusion line. At higher temperatures, the ferrite grains coarsened in the decarburized zone. 3) In the change of microstructure of stainless steel overlaid weld metal, the width of carbides precipitated zone and decarburized zone increased with increase of PWHT temperature and time. 4) At about $625^{\circ}C$ to $760^{\circ}C$, chromium carbides, mainly $M_{23} C_6$, precipitate very closely in the carburized layer with remarkable hardening. 5) Precipitation of delta ferrite from molten weld metal depends on solidification phenomenon. There was a small of ferrite near the bond in which the local solidification time was short, comparing with after parts of weld metal. Shape and amount of ferrite were not changed by Post-Weld Heat Treatment after solidification.

  • PDF

A Study on Low Temperature Strength and Fatigue Strength of Austenitic Stainless Steel for Membrane Type LNG Tank (멤브레인형 LNG 탱크용 오스테나이트계 스테인리스강의 저온강도 및 피로강도에 관한 연구)

  • 이해우;신용택;박정웅;이재원;강창룡
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.50-54
    • /
    • 1999
  • Feasibility study of the application of a developed annealed austenitic stainless steel at cryogenic temperature has been performed for membrane tank of LNG ship. Chemical properties of developed stainless steel are compared with a domestic commercial stainless steel and a foreign stainless steel which are used for LNG ships. Tensile properties at cryogenic temperature and fatigue strength at room temperature are measured for but and lap joints which are TIG welded specimens. Developed stainless steel having a small amount of titanium component shows the finest grain size in the HAZ, compared with the other stainless steel studied. Tensile strength, elongation and fatigue strength of the developed stainless steel are equal to those of the foreign stainless steel studied and are higher than the domestic commercial stainless steel studied.

  • PDF

Ultrasonic Examination of Thick Austenitic Stainless Steel Welds and Factors Influence the Sensitivity

  • Palaniappan, M.;Subbaratnam, R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.372-379
    • /
    • 2003
  • The problems encountered by ultrasonic testing of austenitic stainless steel weld joints are discussed in the paper. Due to low thermal conductivity and the occurrence of single phase between the melting point and the room temperature, coarse and oriented grains are formed in such weld metals more in thick sections. This leads to higher scattering at the grain boundaries and low signal to noise ratio, and extensive beam skewing. Experimental results to understand these problem are explained.

( Control of Primary Solidification Mode for Improving Solidification Cracking Resistance , Corrosion Resistance and Cryogenic Toughness of Austenitic Stainless Steel (오스테나이트계 스테인리스강의 응고균열저항 내식성 및 극저온 초성 향상을 위한 초정응고 형식의 제어)

  • 정호신
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.208-215
    • /
    • 1992
  • Concept of primary solidification mode control was adopted to obtain optimal solidification crack resistance, hot ductility, corrosion resistance and toughness for austenitic stainless steel. By controlling primary solidification phase as primary $\delta$ and containing no ferrite at room temperature, optimal solidification crack resistance, hot ductility, corrosion resistance and cryogenic toughness could be obtained. The optimum chemical composition of austenitic stainless steel ranges 1.46~1.55(Creq/Nieq ratio) calculated by Schaeffler's equation.

  • PDF