• Title/Summary/Keyword: Auto reclosing

Search Result 16, Processing Time 0.028 seconds

Implementation of Auto-reclosing Relay Algorithm based on Multi-Agent System using EMTP-MODELS (EMTP-MODELS를 이용한 Multi-Agent System 기반의 자동 재폐로 계전 알고리즘 구현)

  • Lee, Byung-Hyun;Yeo, Sang-Min;Lee, You-Jin;Kim, Chul-Hwan;Sung, No-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • This paper presents auto-reclosing algorithms with reference to power system stability based on MAS(Multi-Agent System). And this paper shows auto-reclosing algorithms considering power system stability. It includes the variable dead time, optimal reclosing, sequential reclosing, emergency extended equal-area criterion(EEEAC) algorithm, and modified EEEAC algorithm. This paper divides Auto-reclosing algorithms into respectively agents according to their tasks. A separated agent is merely a software entity that is situated in some environment and is able to autonomously react to changes in the environment. And all the simulations in this parer were tested by EMTP MODELS.

A Study on the Auto-Reclose Dead lime Control using Neural Network based On-line Transient Stability Assessment (신경회로망을 이용한 On-line 과도안정도 평가에 의한 자동재폐로 무전압 시간제어 연구)

  • Kim, Il-Dong;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.131-136
    • /
    • 1995
  • This paper presents a functional ability improvement of auto-reclosing relay in the power transmission line protection. When the high speed auto-reclosing is successful, Auto-reclosing is practically valuable to improve the transient stability limit of a power system, but it is fail due to surviving fault, both electrical and mechanical stresses can result on the transformers and turbine-generator. It is true that the longer dead time of the reclosing relay gives the higher rate of successful reclosing, On the other hand, the power system does not always need high speed reclosing because of enough stability margin. This paper proposed "stability margin based dead time reclosing" in order to decrease not only the rate of unsuccessful reclosing, but the possibility of the harmful stress also. On-line transient stability assessment using artificial neural network, for implementing the proposed scheme, has studied and tested with resonable results.

  • PDF

Development of Education and Training System for the Auto-Reclosing of Power Transmission System Using a Real Time Digital Simulator (실시간 계통시뮬레이터를 이용한 송전계통 자동재폐로 교육 및 훈련 시스템 개발)

  • Park, Jong-Chan;Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • This paper summarizes an education and training system for the auto-reclosing of power transmission system using a real time digital simulator. The system is developed to understand the principle of reclosing and the sequence of automatic reclosing schemes, and practice the effects of reclosing actions to power system in real-time simulator. This study is concentrated into the following two parts. One is the development of real time education and training system of automatic reclosing schemes. For this, we use the RTDS(real time digital simulator) and the actual digital protective relay. The mathematical relay model of RTDS and the actual distance relay which is equipped automatic reclosing function are also used. The other is the user friendly interface between trainee and trainer. The various interface displays are used for user handing and result display. The conditions of automatic reclosing which is a number of reclosing, reclosing dead time, reset time, and so on, can be changed by the user interface panel. A number of scenario cases are reserved for the education and training. Through the test, we verified that the proposed system can be effectively used to accomplish the education and training of automatic reclosing.

A study on SFCL System for Korean future distribution power system application considering auto reclosing actions of protection system (미래 배전계통에서의 자동재폐로 동작을 고려한 초전도한류시스템에 관한 연구)

  • Lee, Seung-Ryul;Kim, Jong-Yul;Yoon, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.344-346
    • /
    • 2005
  • The recovery time of developing SFCL(Superconducting Fault Current Limiter) has an uncertainty. In general, the recovery time is estimated at 1 sec and more, even though the progress of SFCL technology is considered. However, auto reclosing time of circuit breaker is 0.5 sec in Korean distribution power system. It is impossible to apply only one SFCL to power system because the recovery time is over the reclosing time of protection system. This study proposes a new SFCL system for distribution power system application. The proposed systems consider auto reclosing action for the protection in practical power system and consist of tow parallel SFCLs.

  • PDF

A Study on SFCL Systems for Future Korean T&D Power System Application Considering Auto Reclosing Actions of Protection System (미래 송배전계통에서의 자동재폐로 동작을 고려한 초전도한류시스템에 관한 연구)

  • Lee Seung Ryul;Kim Jong-Yul;Yoon Jae Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.12
    • /
    • pp.580-585
    • /
    • 2005
  • The recovery time of developing SFCL(Superconducting Fault Current Limiter) has an uncertainty. In general, the recovery time is estimated at 1 sec and more, even though the progress of SFCL technology is considered. However, auto reclosing time of circuit breaker is 0.3 or 0.5 sec in Korean power system. It is impossible to apply only one SFCL to power system because the recovery time is over the reclosing time of protection system. This study proposes two new SFCL systems for power system application. The proposed systems consider auto reclosing action for the protection in practical power system and consist of tow parallel SFCLs.

Impact of auto-reclosing on Customer systems (재폐로에 의한 수용가측의 영향)

  • Rim, Seong-Jeong;Oh, Jung-Hwan;Kim, Jae-Chul;Kim, Il-Dong;Han, Kyung-Nam;Kim, Yeong-Han
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.740-742
    • /
    • 1996
  • This paper analyzes the Impact of customer system at the transients due to auto-reclosing on 22.9kV distribution lines. The various factors affecting this phenomena are analyzed In detail through parametric studies. These factors Include the fault current, fault location, reclosing angle, capacitor bank size, and customer load characteristics. The impacts of these transients on customer system are described and available to identify the optimal auto-reclosing scheme.

  • PDF

Modelling of Secondary Arc Using EMTP-RV (EMTP-RV를 이용한 2차 아크 모델링)

  • Oh, Yun-Sik;Kang, Sung-Bum;Seo, Hun-Chul;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.937-943
    • /
    • 2012
  • Most of faults occurred in transmission lines are single-phase to ground faults and transient faults. Single-phase auto reclosing is an appropriate scheme to maintain the system stability and restore the system effectively when those faults are occurred. In single-phase auto reclosing scheme, the secondary arc is generated after faulted phase is tripped to eliminate the fault and it is sustained by the capacitive and inductive coupling to the healthy phases. It is important to reclose the faulted phase after fully extinction of secondary arc because of the damage applied to system. Therefore, it is necessary to research on the detection of secondary arc extinction to ensure high success rate of reclosing. In this step, firstly, the accurate modelling of secondary arc should be performed. In this paper, the modelling of secondary arc is performed by using EMTP-RV and the simulation results show that the implemented model is correct and effective.

A Study on Momentary Voltage Variation Caused by Auto-reclosing (자동재폐로에 의한 순간전압변동에 관한 연구)

  • Yun, Sang-Yun;Rim, Seong-Jeong;Oh, Jung-Hwan;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.962-965
    • /
    • 1997
  • This paper analyzes the effect of momentary voltage variation caused by auto-reclosing. The occurrence mechanism of momentary voltage variation caused by auto-reclosing is explained. Through the statistical analysis of the actual operation data over 4 years in a model substation the conventional reliability and the power Quality which considered momentary voltage variation are compared. This paper resents the toleration curves of each load types to investigate the affected degree of the loads carrying out the experiment.

  • PDF

A Study on Optimal Sequential Reclosing to Improve Transient Stability in Transmission System (송전계통 과도 안정도 향상을 위한 최적 순차 재폐로에 관한 연구)

  • Gwon, Gi-Hyeon;Oh, Yun-Sik;Park, Ji-Kyung;Jo, Kyu-Jung;Sohn, Seung-Hyun;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1354-1360
    • /
    • 2013
  • In transmission system, reclosing scheme is very useful method to improve continuity of power supply and reliability of system. Especially, high speed reclosing which is used generally in transmission systems has a benefit improving transient stability. However, the reclosing can jeopardize the stability under the condition having high difference of voltage phase angle between both ends. Thus, this paper proposes optimal sequential reclosing scheme to improve transient stability due to reclosing operation. The optimal sequential reclosing is that each phase is closed sequentially considering transient energy. In this paper, 345kV and 154kV transmission system is modeled using EMTP (ElectroMagnetic Transient Program) to verify the performance and effectiveness of optimal sequential reclosing on transient stability. Also, Integral Square Error(ISE) method is used to assess the transient stability.

A study on SFCL systems for power system application (실계통적용을 위한 초전도한류시스템에 대한 연구)

  • Lee Seung Ryul;Kim Jong Yul;Yoon Jae Young
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • The recovery time of developing SFCL(Superconducting Fault Current Limiter) has an uncertainty. In general, the recovery time is estimated at 1 sec and more, even though the Process of SFCL technology is considered. However, auto reclosing time of circuit breaker is 0.3 sec in Korean power system. It is impossible to apply only one SFCL to power system because the recovery time is over the reclosing time of protection system. This study proposes two new SFCL systems for power system application. The proposed systems consider auto reclosing action for the protection in practical power system and consist of tow parallel SFCLS.