• Title/Summary/Keyword: Automatic Ball Balancer

Search Result 13, Processing Time 0.022 seconds

Modeling and Dynamic Analysis of a Front Loaded Washing Machine with Ball Type Automatic Balancer (볼 자동균형장치를 채용한 드럼세탁기의 모델링 및 동적 거동 해석)

  • 이준영;조성오;김태식;박윤서
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.670-682
    • /
    • 1998
  • Ball type automatic balancer is used to reduce the vibration caused by unbalance of rotor. In this study, A analytic modeling of a front loaded washing machine with ball type automatic balancer has been suggested theoretically and ADAMS has been used to analyze the dynamic characteristics of automatic balancer. It is found from simulation and experimental results that the automatic balancer suppress the steady state vibration of washing machine effectively. The test results match with the simulation results of ADAMS, thereby the dynamic model of ADAMS can be used as virtual prototype to predict the vibration characteristics which could be changed by the modification of design variableand can reduce the design cycle sharphy. To maximize the balancing effect of automatic balancer, the friction between balls and race and the deviation between geometric center and rotation center of drum need to be minimized and the optimum design for the stiffness of flange shaft and the angular acceleration of drum should be achieved.

  • PDF

Modeling and Dynamic Analysis of a Front Loaded Washing Machine with Ball Type Automatic Balancer (볼 자동균형장치를 채용한 드럼세탁기의 모델링 및 동적 거동 해석)

  • 이준영;조성오;김태식;박윤서
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.119-131
    • /
    • 1997
  • Ball type automatic balancer is used to reduce the vibration caused by unbalance of rotor. In this study, A analytic modeling of a front loaded washing machine with ball type automatic balancer has been suggested theoretically and ADAMS has been used to analyze the dynamic characteristics of automatic balancer. It is found from simulation and experimental results that the automatic balancer suppress the steady state vibration of the washing machine effectively. The test results match well with the simulation results of ADAMS, thereby the dynamic model of ADAMS can be used as virtual prototype to predict the vibration characteristics which could be changed by the modification of design variable and can reduce the design cycle sharply. To maximize the balancing effect of automatic balancer, the friction between balls and race and the deviation between geometric center and rotation center of drum need to be minimized and the optimum design for the stiffness of flange shaft and the angular acceleration of drum should be achieved.

  • PDF

Automatic Ball Balancer for Vibration Reduction of Rotating Machines (회전기계의 진동저감을 위한 자동볼평형장치)

  • Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.59-68
    • /
    • 2005
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After non-dimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

Dynamic Analysis of an Optical Disk Drive with an Automatic Ball Balancer (자동볼평형장치가 부착된 광디스크 드라이브의 동특성해석)

  • Kim, Kang-Sung;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2511-2518
    • /
    • 2002
  • Dynamic behaviors and stability of an optical disk drive coupled with an automatic ball balancer (ABB) are analyzed by a theoretical approach. The feeding system is modeled a rigid body with six degree-of-freedom. Using Lagrange's equation, we derive the nonlinear equations of motion for a non -autonomous system with respect to the rectangular coordinate. To investigate the dynamic stability of the system in the neighborhood of the equilibrium positions, the monodromy matrix technique is applied to the perturbed equations. On the other hand, time responses are computed by the Runge -Kutta method. We also investigate the effects of the damping coefficient and the position of ABB on the dynamic behaviors of the system.

Vibration Analysis of an Automatic Ball Balancer with Double Races (이중레이스를 갖는 자동평형장치의 진동해석)

  • Lee, Dong-Jin;Jeong, Jin-Tae;Hwang, Cheol-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1093-1102
    • /
    • 2000
  • Dynamic behaviors are analyzed for an automatic ball balancer with double races which is a device to reduce eccentricity of rotors. Equations of motion are derived by using the polar coordinate sys tem instead of the rectangular coordinate system which is used in other previous researches. To analyze the stability around equilibrium positions, the perturbation method is used. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

Effects of Gravity and Angular Velocity Profiles on the Dynamic Behavior of an Automatic Ball Balancer (자동볼평형장치의 동적거동에 미치는 중력과 속도파형의 영향)

  • Jung, Du-Han;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.511-516
    • /
    • 2004
  • The dynamic behavior of an automatic ball balancer (ABB) is studied considering the effects of gravity and angular velocity profiles. In this study, a physical model for an ABB installed on the Jeffcott rotor is adopted in order to investigate the effects of gravity and angular acceleration. The equations of motion for the rotor with ABB are derived by using Lagrange's equation. Based on derived equations, dynamic responses for the rotor are computed by using the generalized-o method. From the computed responses, the effects of gravity and angular velocity profiles on the dynamic behavior are investigated. It is found that the balancing of the rotor with ABB can be achieved regardless of gravity. It Is also shown that a smooth velocity profile yields relatively smaller vibration amplitude than a non-smooth velocity profile.

Dynamic Analysis of an Optical Disk Drive with an Automatic Ball Balancer (자동볼평형장치가 부착된 광디스크 드라이브의 동특성해석)

  • 김강성;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.983-988
    • /
    • 2001
  • Dynamic behaviors and stability of an optical disk drive coupled with an automatic ball balancer(ABB) are analyzed by a theoretical approach. The feeding system is modeled a rigid body with six degree-of-freedom. Using Lagrange's equation, we derive the nonlinear equations of motion for a non-autonomous system with respect to the rectangular coordinate. To investigate the dynamic stability of the system in the neighborhood of the equilibrium positions, the monodromy matrix technique is applied to the perturbed equations. On the other hand, time responses are computed by the Runge-Kutta method. We also investigate the effects of the damping coefficient and the position of ABB on the dynamic behaviors of the system.

  • PDF

Design Guidelines for the Automatic Ball Balancer in CD/DVD Systems with Varying Eccentricity (편심이 변하는 CD/DVD시스템의 자동 볼 평형장치 설계 지침)

  • 김보현;류제하
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.387-392
    • /
    • 1999
  • This paper presents design guidelines for the automatic ball balancer in CD/DVD systems with varying eccentricity. In these systems, the size of balancing balls should be limited by the restricted race space so that determination of the number and mass of balls should consider the radii of the race and the balls. In addition, the effects of viscosity and friction also should be taken into account for sufficient balancing. Based on the static equilibrium conditions, the number and mass of balls corresponding to the range of varying eccentricity have been determined. Dynamic simulation with viscosity and friction shows sufficient viscosity must exist to ensure stability and friction between balls and race must be minimized to guarantee accurate balancing.

  • PDF

Vibration Analysis of an Automatic Ball Balancer (자동 볼 평형장치의 진동 해석)

  • 박준민;노대성;정진태
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.363-370
    • /
    • 1999
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After nondimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

Vibration Reduction of an Optical Disk Drive Using an Automatic Ball Balancer (자동 볼 평형장치를 이용한 광 디스크 드라이브의 진동 저감)

  • 이동진;정진태;노대성
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.355-362
    • /
    • 1999
  • Vibration reduction of an optical disk drive is achieved by an automatic ball balancer and dynamic behaviors of the drive are studied by theoretical approaches. Using Lagrange's equation, we derive nonlinear equations of motion for a non-autonomous system with respect to the rectangular coordinate. To investigate the dynamic stability of the system in the neighborhood of equilibrium positions, the Floquet theory is applied to the perturbed equations. On the other hand, time responses are computed by an explicit time integration method. We also investigate the effects of mass center and the position of the ABB on the dynamic behaviors of the system.

  • PDF