• Title/Summary/Keyword: Automatic matching points extraction

Search Result 20, Processing Time 0.024 seconds

Automatic generation of reliable DEM using DTED level 2 data from high resolution satellite images (고해상도 위성영상과 기존 수치표고모델을 이용하여 신뢰성이 향상된 수치표고모델의 자동 생성)

  • Lee, Tae-Yoon;Jung, Jae-Hoon;Kim, Tae-Jung
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.193-206
    • /
    • 2008
  • If stereo images is used for Digital Elevation Model (DEM) generation, a DEM is generally made by matching left image against right image from stereo images. In stereo matching, tie-points are used as initial match candidate points. The number and distribution of tie-points influence the matching result. DEM made from matching result has errors such as holes, peaks, etc. These errors are usually interpolated by neighbored pixel values. In this paper, we propose the DEM generation method combined with automatic tie-points extraction using existing DEM, image pyramid, and interpolating new DEM using existing DEM for more reliable DEM. For test, we used IKONOS, QuickBird, SPOT5 stereo images and a DTED level 2 data. The test results show that the proposed method automatically makes reliable DEMs. For DEM validation, we compared heights of DEM by proposed method with height of existing DTED level 2 data. In comparison result, RMSE was under than 15 m.

  • PDF

Automatic Matching of Multi-Sensor Images Using Edge Detection Based on Thinning Algorithm (세선화 알고리즘 기반의 에지검출을 이용한 멀티센서 영상의 자동매칭)

  • Shin, Sung-Woong;Kim, Jun-Chul;Oh, Kum-Hui;Lee, Young-Ran
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.407-414
    • /
    • 2008
  • This study introduces an automatic image matching algorithm that can be applied for the scale different image pairs consisting of the satellite pushbroom images and the aerial frame images. The proposed method is based on several image processing techniques such as pre-processing, filtering, edge thinning, interest point extraction, and key-descriptor matching, in order to enhance the matching accuracy and the processing speed. The proposed method utilizes various characteristics, such as the different geometry of image acquisition and the different radiometric characteristics, of the multi-sensor images. In addition, the suggested method uses the sensor model to minimize search area and eliminate false-matching points automatically.

Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area (도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석)

  • Yeom, Jun Ho;Han, You Kyung;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Multi-temporal high resolution satellite images are essential data for efficient city analysis and monitoring. Yet even when acquired from the same location, identical sensors as well as different sensors, these multi-temporal images have a geometric inconsistency. Matching points between images, therefore, must be extracted to match the images. With images of an urban area, however, it is difficult to extract matching points accurately because buildings, trees, bridges, and other artificial objects cause shadows over a wide area, which have different intensities and directions in multi-temporal images. In this study, we analyze a shadow effect on image matching of high resolution satellite images in urban area using Scale-Invariant Feature Transform(SIFT), the representative matching points extraction method, and automatic shadow extraction method. The shadow segments are extracted using spatial and spectral attributes derived from the image segmentation. Also, we consider information of shadow adjacency with the building edge buffer. SIFT matching points extracted from shadow segments are eliminated from matching point pairs and then image matching is performed. Finally, we evaluate the quality of matching points and image matching results, visually and quantitatively, for the analysis of shadow effect on image matching of high resolution satellite image.

Sectional corner matching for automatic relative orientation

  • Seo, Ji-Hun;Bang, Ki-In;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.74-74
    • /
    • 2002
  • This paper describes a corner matching technique for automatic relative orientation. Automatically matched corner points from stereo aerial images are used to a data set and help to improve automation of relative orientation process. A general corner matching process of overall image to image has very heavy operation and repetitive computation, so very time-consuming. But aerial stereo images are approximately seventy percent overlapped and little rotated. Based this hypothesis, we designed a sectional corner matching technique calculating correlation section by section between stereo images. Although the overlap information is not accurate, if we know it approximately, the matching process can be lighter. Since the size of aerial image is very large, corner extraction process is performed hierarchically by creating image pyramid, and corners extracted are refined at the higher level image. Extracted corners at the final step are matched section by section. Matched corners are filtered using positional information and their relation and distribution. Filtering process is applied over several steps because the thing affecting to get good result-good relative orientation parameter- is not the number of matched corner points but the accuracy of them. Filtered data is filtered one more during the process calculating relative orientation parameters. When the process is finished, we can get the well matched corner points and the refined Von-Gruber areas besides relative orientation parameters. This sectional corner matching technique is efficient by decreasing unnecessarily repetitive operations and contributes to improve automation for relative orientation.

  • PDF

Fault Pattern Extraction Via Adjustable Time Segmentation Considering Inflection Points of Sensor Signals for Aircraft Engine Monitoring (센서 데이터 변곡점에 따른 Time Segmentation 기반 항공기 엔진의 고장 패턴 추출)

  • Baek, Sujeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.86-97
    • /
    • 2021
  • As mechatronic systems have various, complex functions and require high performance, automatic fault detection is necessary for secure operation in manufacturing processes. For conducting automatic and real-time fault detection in modern mechatronic systems, multiple sensor signals are collected by internet of things technologies. Since traditional statistical control charts or machine learning approaches show significant results with unified and solid density models under normal operating states but they have limitations with scattered signal models under normal states, many pattern extraction and matching approaches have been paid attention. Signal discretization-based pattern extraction methods are one of popular signal analyses, which reduce the size of the given datasets as much as possible as well as highlight significant and inherent signal behaviors. Since general pattern extraction methods are usually conducted with a fixed size of time segmentation, they can easily cut off significant behaviors, and consequently the performance of the extracted fault patterns will be reduced. In this regard, adjustable time segmentation is proposed to extract much meaningful fault patterns in multiple sensor signals. By considering inflection points of signals, we determine the optimal cut-points of time segments in each sensor signal. In addition, to clarify the inflection points, we apply Savitzky-golay filter to the original datasets. To validate and verify the performance of the proposed segmentation, the dataset collected from an aircraft engine (provided by NASA prognostics center) is used to fault pattern extraction. As a result, the proposed adjustable time segmentation shows better performance in fault pattern extraction.

Road Centerline Tracking From High Resolution Satellite Imagery By Least Squares Templates Matching

  • Park, Seung-Ran;Kim, Tae-Jung;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.34-39
    • /
    • 2002
  • Road information is very important for topographic mapping, transportation application, urban planning and other related application fields. Therefore, automatic detection of road networks from spatial imagery, such as aerial photos and satellite imagery can play a central role in road information acquisition. In this paper, we use least squares correlation matching alone for road center tracking and show that it works. We assumed that (bright) road centerlines would be visible in the image. We further assumed that within a same road segment, there would be only small differences in brightness values. This algorithm works by defining a template around a user-given input point, which shall lie on a road centerline, and then by matching the template against the image along the orientation of the road under consideration. Once matching succeeds, new match proceeds by shifting a matched target window further along road orientation at the target window. By repeating the process above, we obtain a series of points, which lie on a road centerline successively. A 1m resolution IKONOS images over Seoul and Daejeon were used for tests. The results showed that this algorithm could extract road centerlines in any orientation and help in fast and exact he ad-up digitization/vectorization of cartographic images.

  • PDF

Conjugate Point Extraction for High-Resolution Stereo Satellite Images Orientation

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.55-62
    • /
    • 2019
  • The stereo geometry establishment based on the precise sensor modeling is prerequisite for accurate stereo data processing. Ground control points are generally required for the accurate sensor modeling though it is not possible over the area where the accessibility is limited or reference data is not available. For the areas, the relative orientation should be carried out to improve the geometric consistency between the stereo data though it does not improve the absolute positional accuracy. The relative orientation requires conjugate points that are well distributed over the entire image region. Therefore the automatic conjugate point extraction is required because the manual operation is labor-intensive. In this study, we applied the method consisting of the key point extraction, the search space minimization based on the epipolar line, and the rigorous outlier detection based on the RPCs (Rational Polynomial Coefficients) bias compensation modeling. We tested different parameters of window sizes for Kompsat-2 across track stereo data and analyzed the RPCs precision after the bias compensation for the cases whether the epipolar line information is used or not. The experimental results showed that matching outliers were inevitable for the different matching parameterization but they were successfully detected and removed with the rigorous method for sub-pixel level of stereo RPCs precision.

Image Matching Method of Digital Surface Model Generation for Built-up Area (건물지역 수치표면모형 자동생성을 위한 영상정합 방법)

  • 박희주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.315-322
    • /
    • 2000
  • DSM(Digital Surface Model) is a digital model which represents the surface elevation of a region. DSM is necessary for orthoimage generation, and frequently used in man-made object extraction from aerial photographs nowadays. Image matching technique enables automatic DSM generation. This proposed a image matching method which can be applied to automatic generation of DSM for Built-up Area. The matching method proposed is to find conjugate points and conjugate lines from overlapping aerial images. In detecting conjugate points, the positional relation between possible conjugate point pair as well as correlation of pixel gray value is compared. In detecting conjugate lines, the color attribute of flank region of line, shape of line, positional relation between neighborhood points and lines, and the connection relation between lines are compared. The proposed matching method is assumed to be useful for DSM generation including Built-up Area.

  • PDF

Automatic Generation of GCP Chips from High Resolution Images using SUSAN Algorithms

  • Um Yong-Jo;Kim Moon-Gyu;Kim Taejung;Cho Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.220-223
    • /
    • 2004
  • Automatic image registration is an essential element of remote sensing because remote sensing system generates enormous amount of data, which are multiple observations of the same features at different times and by different sensor. The general process of automatic image registration includes three steps: 1) The extraction of features to be used in the matching process, 2) the feature matching strategy and accurate matching process, 3) the resampling of the data based on the correspondence computed from matched feature. For step 2) and 3), we have developed an algorithms for automated registration of satellite images with RANSAC(Random Sample Consensus) in success. However, for step 1), There still remains human operation to generate GCP Chips, which is time consuming, laborious and expensive process. The main idea of this research is that we are able to automatically generate GCP chips with comer detection algorithms without GPS survey and human interventions if we have systematic corrected satellite image within adaptable positional accuracy. In this research, we use SUSAN(Smallest Univalue Segment Assimilating Nucleus) algorithm in order to detect the comer. SUSAN algorithm is known as the best robust algorithms for comer detection in the field of compute vision. However, there are so many comers in high-resolution images so that we need to reduce the comer points from SUSAN algorithms to overcome redundancy. In experiment, we automatically generate GCP chips from IKONOS images with geo level using SUSAN algorithms. Then we extract reference coordinate from IKONOS images and DEM data and filter the comer points using texture analysis. At last, we apply automatically collected GCP chips by proposed method and the GCP by operator to in-house automatic precision correction algorithms. The compared result will be presented to show the GCP quality.

  • PDF

Automatic Extraction Method of Control Point Based on Geospatial Web Service (지리공간 웹 서비스 기반의 기준점 자동추출 기법 연구)

  • Lee, Young Rim
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes an automatic extraction method of control point based on Geospatial Web Service. The proposed method consists of 3 steps. 1) The first step is to acquires reference data using the Geospatial Web Service. 2) The second step is to finds candidate control points in reference data and the target image by SURF algorithm. 3) By using RANSAC algorithm, the final step is to filters the correct matching points of candidate control points as final control points. By using the Geospatial Web Service, the proposed method increases operation convenience, and has the more extensible because of following the OGC Standard. The proposed method has been tested for SPOT-1, SPOT-5, IKONOS satellite images and has been used military standard data as reference data. The proposed method yielded a uniform accuracy under RMSE 5 pixel. The experimental results proved the capabilities of continuous improvement in accuracy depending on the resolution of target image, and showed the full potential of the proposed method for military purpose.