• 제목/요약/키워드: Automotive Door Design

검색결과 72건 처리시간 0.023초

고장력강을 이용한 자동차 경량 도어 개발 프로세스 (The Process Development of Automotive Light-Weighting Door using High Strength Steel)

  • 장동환
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.55-62
    • /
    • 2017
  • This paper proposes the process to develop a light-weighting automotive door assembly using high strength steel with low cost penalty. In recent years, the automotive industry is making an effort to reduce the vehicle weight. In this study, inner panels for automotive front door using thinner sheets and quenchable boron steel were designed to reduce the weight of conventional one. In order to evaluate the stiffness properties for the proposed door design, the several static tests were conducted using the finite element method. Based on the simulation results, geometry modifications of the inner panels were taken into account in terms of thickness changes and cost saving. Furthermore, a prototype based on the proposed design has been made, and then static stiffness test carried out. From the results, the proposed door is proved compatible and weight reduction of 11.8% was achieved. It could be a reference process for automotive industry to develop the similar products.

합체박판 기술을 적용한 고장도 경량도어 최적 설계 (Optimal Design of Lightweight High Strength Door with Tailored Blank)

  • 송세일;박경진
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.174-185
    • /
    • 2002
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. Tailored blanks offer the opportunity to decrease door weight, reduce manufacturing costs, and improve door stiffness. Optimization technology is applied to the inner panel of a door which is made by tailored blanks. The design of tailored blanks door starts from an existing door. At first, the hinge reinforcement and inner reinforcement are removed to use tailored blanks technology. The number of parts and the welding lines are determined from intuitions and the structural analysis results of the existing door. Size optimization is carried out to find thickness while the stiffness constraints are satisfied. The door hinge system is optimized using design of experiment approach. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

크리깅모델을 이용한 자동차 도어의 구조설계 (Structural Design of an Automotive Door Using the Kriging Models)

  • 이권희;방일권
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.146-153
    • /
    • 2007
  • Weight reduction for automobile components has been sought to achieve fuel efficiency and energy conservation. There are two approaches in reducing their weights. One is by using material lighter than steel, and the other is by redesigning their structures. The latter has been performed by adopting hydroforming, tailor weled blank, optimization, etc. In this research, the kriging approximation method and simulated annealing algorithm are applied to the design of a front door made by TWB (Tailor Welded Blank) technology. The design variables are set up as the thicknesses of parts and the positions of parting lines. A thickness set considered as a design variable of each part is not arbitrarily determined but selected from standard products, so it is a discrete set. This research presents the discrete and continuous structural optimization method for an automotive door design.

최적화기법 및 실험계획 법을 이용한 자동차 도어의 경량화 설계 (Lightweight Design for Automotive Door Using Optimizations and Design of Experiments)

  • 송세일;배금종;이권희;박경진
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.125-132
    • /
    • 2002
  • Recently, ULSAB(Ultra Light Steel Auto Body) concept is getting more attention due to various benefits in automotive body design. One of the ULSAB efforts is making a door with TWB(Tailor Welded Blanks). In TWB, two or more patches of steel panels are welded together before stamping process. In this research, domains and thicknesses of the patches in a front door structure are determined by a series of optimization schemes composed of topology, size and shape optimization and DOE(Design of Experiments) scheme. A door is designed to have better performances compared to exiting structure considering static stiffness and natural frequency. The final design is discussed and compared to the existing design.

DESIGN PROGRAM FOR THE KINEMATIC AND DYNAMIC CHARACTERISTICS OF THE BUS DOOR MECHANISM

  • KWON S.-J.;SUH M.-W.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.403-411
    • /
    • 2005
  • The bus is regarded as one of the most frequently used public transportation systems, the research and development on driving stability, safety, and convenience for drivers and passengers has tremendously increased in recent days. This paper investigated the design of the bus door mechanism composed of an actuator (or motor) and linkages. The bus door mechanism is divided into many types according to the coupling of the linkages and the driving system. The mathematical models of all types of door mechanism have been constructed for computer simulation. To design the bus door mechanism, we developed a simulation program, which automates the kinematic and dynamic analysis according to the input parameters of each linkage and the driving system. Using this program, we investigated the design parameters that affect the kinematic and dynamic characteristics of the bus door mechanism under various simulation conditions. In addition, simple examples are examined to validate the developed program.

2차원 모델을 이용한 도어 개폐력 해석 (Analysis of Door Effort using 2D Model)

  • 김창원;강성종
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.131-137
    • /
    • 2003
  • Proper door effort, required force to open or close a vehicle door, is an essential door design factor for the safety of passengers and pedestrians. Section shape of the door checker arm is the most influential design parameter for achieving a door effort design target. In this research. an analysis procedure to predict door effort using a simplified plane strain finite element model wes investigated for two passenger cars, for which mechanism of checker systems were: different. The variation of checker arm force to be required during moving on arm in opening and closing direction was estimated through analysis, and the result was transformed to the door effort with respect to door opening angle by considering door characteristics. Also, the self·closing force due to door weight was theoretically calculated and added to the door effort from checker arm force. Finally the estimated results of door effort were compared with test results.

하이브리드 도어 체커 개폐력 해석 (Door Effort Analysis for Hybrid Door Checker)

  • 강성종;김동환
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.52-57
    • /
    • 2012
  • Proper door effort is required for the safety of passenger and pedestrian while securing door operating convenience. 3D finite element analyses for a hybrid door checker were carried out to estimate door checker arm resistance force. And, from the estimated door checker arm resistance force and theoretically calculated self-closing force, door effort was predicted. The analysis results at checker arm peaks showed excellent correlation with the test results. Also, in order to reduce solving time, a modified model with simple spring element was investigated. Finally an equation to easily calculate checker arm resistance force from checker arm shape and spring constant was suggested and its usefulness in early design stage was discussed.

정적충돌성능을 고려한 자동차 옆문 충격빔의 최적설계 (Optimization of the Automotive Side Door Impact Beam Considering Static Requirement)

  • 송세일;차익래;이권희;박경진
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.176-184
    • /
    • 2002
  • The door stiffness is one of the important factors for the side impact. Generally, the researches have been conducted on the assembled door. A side impact door beam is installed in a door to protect occupants from the side impact. This research is only concentrated on the side impact beam and a side impact beam is designed. The cross section is defined to have an elliptic shape. An optimization problem is defined to find the design maximizing the intrusion stiffness within the specified weight. Design variables are the radii and the thickness of the ellipsoid. The analysis of the side impact is carried out by the nonlinear finite element method. The optimization problem is solved by two methods. One is the experimental design scheme using an orthogonal array. The other is the gradient-based optimization using the response surface method(RSM). Both methods have obtained the better designs than the current one.

폴딩 도어 메커니즘 설계를 위한 기구학 및 동역학 해석 프로그램 개발 (Development of the Kinematic and Dynamic Analysis Program for the Design of the Folding Door Mechanism)

  • 서명원;권성진;심문보;조기용;이은표;박승영
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.187-193
    • /
    • 2002
  • Since the bus is regarded as the one of the most public transportation systems, research on the safety and facilities of the bus has been increased actively in recent years. In this paper, we concern the design of the bus door mechanism that is composed of many linkages and actuators(or motors). In particular, the folding door mechanism is representative system installed in most of urban buses. To design the folding door mechanism, we construct the kinematic and dynamic analysis model fur computer simulation. Also, the dynamic analysis is accomplished by both direct dynamics and inverse dynamics. Since the folding door mechanism has many design variables, the analysis program is developed to perceive kinematic and dynamic characteristics according to the design variables and simulation conditions.

승용차 도어에 대한 다분야통합최적설계 (Multidisciplinary Optimization of Automotive Door)

  • 박경진;송세일
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.201-213
    • /
    • 2005
  • The automotive door has a large finite element model in analysis and many design requirements such as stiffness, natural frequency, side intrusion, etc. Thus, various related governing equations should be solved for systematic analysis and design. Because each governing equation has different characteristics, it is almost impossible to solve them simultaneously. Instead, they are separately handled and the analysis results are incorporated into the design separately. Currently, the design is usually conducted by trials and errors with engineering intuition in design practice. In this research, MDO methods are proposed to solve the problems that share design variables in disciplines. The idea is from the Gauss-Seidel type method for multi-discipline analysis. The developed methods show stable convergence and the weight of the door is reduced by fifteen percent.