• Title/Summary/Keyword: Autonomous Driving Control

Search Result 259, Processing Time 0.024 seconds

Development of an Adaptive Feedback based Actuator Fault Detection and Tolerant Control Algorithms for Longitudinal Autonomous Driving (적응형 되먹임 기반 종방향 자율주행 구동기 고장 탐지 및 허용 제어 알고리즘 개발)

  • Oh, Kwangseok;Lee, Jongmin;Song, Taejun;Oh, Sechan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • This paper presents an adaptive feedback based actuator fault detection and tolerant control algorithms for longitudinal functional safety of autonomous driving. In order to ensure the functional safety of autonomous vehicles, fault detection and tolerant control algorithms are needed for sensors and actuators used for autonomous driving. In this study, adaptive feedback control algorithm to compute the longitudinal acceleration for autonomous driving has been developed based on relationship function using states. The relationship function has been designed using feedback gains and error states for adaptation rule design. The coefficients in the relationship function have been estimated using recursive least square with multiple forgetting factors. The MIT rule has been adopted to design the adaptation rule for feedback gains online. The stability analysis has been conducted based on Lyapunov direct method. The longitudinal acceleration computed by adaptive control algorithm has been compared to the actual acceleration for fault detection of actuators used for longitudinal autonomous driving.

A Study on the Steering Control of an Autonomous Robot Using SOM Algorithms (SOM을 이용한 자율주행로봇의 횡 방향 제어에 관한 연구)

  • 김영욱;김종철;이경복;한민홍
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.58-65
    • /
    • 2003
  • This paper studies a steering control method using a neural network algorithm for an intelligent autonomous driving robot. Previous horizontal steering control methods were made by various possible situation on the road. However, it isn't possible to make out algorithms that consider all sudden variances on the road. In this paper, an intelligent steering control algorithm for an autonomous driving robot system is presented. The algorithm is based on Self Organizing Maps(SOM) and the feature points on the road are used as training datum. In a simulation test, it is available to handle a steering control using SOM for an autonomous steering control. The algorithm is evaluated on an autonomous driving robot. The algorithm is available to control a steering for an autonomous driving robot with better performance at the experiments.

  • PDF

Development of a Longitudinal Control Algorithm based on V2V Communication for Ensuring Takeover Time of Autonomous Vehicle (자율주행 자동차의 제어권 전환 시간 확보를 위한 차간 통신 기반 종방향 제어 알고리즘 개발)

  • Lee, Hyewon;Song, Taejun;Yoon, Youngmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • This paper presents a longitudinal control algorithm for ensuring takeover time of autonomous vehicle using V2V communication. In the autonomous driving of more than level 3, autonomous systems should control the vehicles by itself partially. However if the driver's intervention is required for functional safety, the driver should take over the control reasonably. Autonomous driving system has to be designed so that drivers can take over the control from autonomous vehicle reasonably for driving safety. In this study, control algorithm considering takeover time has been developed based on computation method of takeover time. Takeover time is analysed by conditions of longitudinal velocity of preceding vehicle in time-velocity plane. In addition, desired clearance is derived based on takeover time. The performance evaluation of the proposed algorithm in this study was conducted using 3D vehicle model with actual driving data in Matlab/Simulink environment. The results of the performance evaluation show that the longitudinal control algorithm can control while securing takeover time reasonably.

Development of an Intelligent Autonomous Control Algorithm and Test Vehicle Performance Verification (지능형 자율주행 제어 알고리즘 개발 및 시험차량 성능평가)

  • Kim, Won-Gun;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.861-866
    • /
    • 2007
  • This paper presents development of a vehicle lateral and longitudinal control for autonomous driving control and test results obtained using an electric vehicle. Sliding control theory has been used to develop a vehicle speed and distance control algorithm. The longitudinal control algorithm that maintains safety and comfort of the vehicle consists of a cruise and STOP&GO control depending on traffic conditions. Desired steering angle is determined through the lateral position error and the yaw angle error based on preview optimal control. Motor control inputs have been directly derived from the sliding control law. The performance of the autonomous driving control which is integrated with a lateral and longitudinal control is investigated by computer simulations and driving test using an electric vehicle. Electric vehicle system consists of DC driving motor, an electric power steering system, main controller (Autobox)

  • PDF

A Human-Centered Control Algorithm for Personalized Autonomous Driving based on Integration of Inverse Time-To-Collision and Time Headway (자율주행 개인화를 위한 역 충돌시간 및 차두시간 융합 기반 인간중심 제어 알고리즘 개발)

  • Oh, Kwang-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.249-255
    • /
    • 2018
  • This paper presents a human-centered control algorithm for personalized autonomous driving based on the integration of inverse time-to-collision and time headway. In order to minimize the sense of difference between driver and autonomous driving, the human-centered control technology is required. Driving characteristics in case that vehicle drives with the preceding vehicle have been analyzed and reflected to the longitudinal control algorithm. The driving characteristics such as acceleration, inverse time-to-collision, time headway have been analyzed for longitudinal control. The control algorithm proposed in this study has been constructed on Matlab/Simulink environment and the performance evaluation has been conducted by using actual driving data.

Trends and Implications for Driver Status Monitoring in Autonomous Vehicles (자율주행차량 운전자 모니터링에 대한 동향 및 시사점)

  • M. Chang;D.W. Kang;E.H. Jang;W.J. Kim;D.S. Yoon;J.D. Choi
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.31-40
    • /
    • 2023
  • Given recent accidents involving autonomous vehicles, driver monitoring technology related to the transition of control in autonomous vehicles is gaining prominence. Driver status monitoring systems recognize the driver's level of alertness and identify possible impairments in the driving ability owing to conditions including drowsiness and distraction. In autonomous vehicles, predictive factors for the transition to manual driving should also be included. During traditional human driving, monitoring the driver's status is relatively straightforward owing to the consistency of crucial cues, such as the driver's location, head orientation, gaze direction, and hand placement. However, monitoring becomes more challenging during autonomous driving because of the absence of direct manual control and the driver's engagement in other activities, which may obscure the accurate assessment of the driver's readiness to intervene. Hence, safety-ensuring technology must be balanced with user experience in autonomous driving. We explore relevant global and domestic regulations, the new car assessment program, and related standards to extract requirements for driver status monitoring. This kind of monitoring can both enhance the autonomous driving performance and contribute to the overall safety of autonomous vehicles on the road.

Development of Simulation Environment for Autonomous Driving Algorithm Validation based on ROS (ROS 기반 자율주행 알고리즘 성능 검증을 위한 시뮬레이션 환경 개발)

  • Kwak, Jisub;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.20-25
    • /
    • 2022
  • This paper presents a development of simulation environment for validation of autonomous driving (AD) algorithm based on Robot Operating System (ROS). ROS is one of the commonly-used frameworks utilized to control autonomous vehicles. For the evaluation of AD algorithm, a 3D autonomous driving simulator has been developed based on LGSVL. Two additional sensors are implemented in the simulation vehicle. First, Lidar sensor is mounted on the ego vehicle for real-time driving environment perception. Second, GPS sensor is equipped to estimate ego vehicle's position. With the vehicle sensor configuration in the simulation, the AD algorithm can predict the local environment and determine control commands with motion planning. The simulation environment has been evaluated with lane changing and keeping scenarios. The simulation results show that the proposed 3D simulator can successfully imitate the operation of a real-world vehicle.

An evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle (자율주행 자동차 임시운행 허가를 위한 안전 성능 평가 시나리오)

  • Jeong, Yonghwan;Yi, Kyongsu;Choi, In Seong;Min, Kyong Chan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.44-49
    • /
    • 2015
  • This paper presents an evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle driving on a motorway. Based on advanced driver assistance system (ADAS) which is already mass-production, an autonomous vehicle driving on motorway is tested on the public roads and also getting close to mass-production. Before the autonomous vehicle tested, the safety of autonomous driving system should be evaluated based on a proper test scenario. Prior to develop the test scenario, this paper reviews the licensing standards for an autonomous vehicle in California and Nevada, and the international regulations of each ADAS. To develop the scenario, the driving conditions of motorway are categorized into five modes and fundamental evaluation requirements of elements of autonomous driving system are derived. An evaluation scenario, which represents the real driving conditions, has been developed to assess the safety of autonomous vehicle. This scenario has validated by computer simulation using model predictive control (MPC) based autonomous driving algorithm.

Hybrid Control Strategy for Autonomous Driving System using HD Map Information (정밀 도로지도 정보를 활용한 자율주행 하이브리드 제어 전략)

  • Yu, Dongyeon;Kim, Donggyu;Choi, Hoseung;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.80-86
    • /
    • 2020
  • Autonomous driving is one of the most important new technologies of our time; it has benefits in terms of safety, the environment, and economic issues. Path following algorithms, such as automated lane keeping systems (ALKSs), are key level 3 or higher functions of autonomous driving. Pure-Pursuit and Stanley controllers are widely used because of their good path tracking performance and simplicity. However, with the Pure-Pursuit controller, corner cutting behavior occurs on curved roads, and the Stanley controller has a risk of divergence depending on the response of the steering system. In this study, we use the advantages of each controller to propose a hybrid control strategy that can be stably applied to complex driving environments. The weight of each controller is determined from the global and local curvature indexes calculated from HD map information and the current driving speed. Our experimental results demonstrate the ability of the hybrid controller, which had a cross-track error of under 0.1 m in a virtual environment that simulates K-City, with complex driving environments such as urban areas, community roads, and high-speed driving roads.