• 제목/요약/키워드: Autonomous Moving

검색결과 217건 처리시간 0.025초

스마트 자율주행 공기청정기 시스템 개발 (Development of the Smart Autonomous Moving Air Purifier System)

  • 임아연;신효진;정의훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.109-114
    • /
    • 2022
  • 최근 미세먼지가 심각한 사회문제로 대두되며 이에 대한 대책으로 공기청정기가 각광을 받고 있다. 이에 따라 본 논문에서는 스마트 자율주행 공기청정기 시스템에 관한 연구 개발을 진행하였다. 개발된 스마트 자율주행 공기청정기는 기존 공기청정기의 표준사용면적의 한계를 개선하고 효율적으로 공기 정화 기능을 수행할 수 있다. 또한 스마트 자율주행 공기청정기 사용의 편의성을 위해 모바일 앱(App)과 웹(Web)기반 프로그램을 같이 개발하였다. 앱을 통해 3가지 공기 정화 모드를 간편하게 조작할 수 있고, 웹을 통해 어디서나 공기오염도에 대한 통계 수치를 모니터링할 수 있다. 그리고 시험을 통해 제안된 스마트 자율주행 공기청정기가 기존의 공기청정기보다 더 효율적임을 보였다.

The Effect of Process Models on Short-term Prediction of Moving Objects for Autonomous Driving

  • Madhavan Raj;Schlenoff Craig
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권4호
    • /
    • pp.509-523
    • /
    • 2005
  • We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.

무인 항공기의 이동체 상부로의 영상 기반 자동 착륙 시스템 (Vision-based Autonomous Landing System of an Unmanned Aerial Vehicle on a Moving Vehicle)

  • 정성욱;구정모;정광익;김형진;명현
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.262-269
    • /
    • 2016
  • Flight of an autonomous unmanned aerial vehicle (UAV) generally consists of four steps; take-off, ascent, descent, and finally landing. Among them, autonomous landing is a challenging task due to high risks and reliability problem. In case the landing site where the UAV is supposed to land is moving or oscillating, the situation becomes more unpredictable and it is far more difficult than landing on a stationary site. For these reasons, the accurate and precise control is required for an autonomous landing system of a UAV on top of a moving vehicle which is rolling or oscillating while moving. In this paper, a vision-only based landing algorithm using dynamic gimbal control is proposed. The conventional camera systems which are applied to the previous studies are fixed as downward facing or forward facing. The main disadvantage of these system is a narrow field of view (FOV). By controlling the gimbal to track the target dynamically, this problem can be ameliorated. Furthermore, the system helps the UAV follow the target faster than using only a fixed camera. With the artificial tag on a landing pad, the relative position and orientation of the UAV are acquired, and those estimated poses are used for gimbal control and UAV control for safe and stable landing on a moving vehicle. The outdoor experimental results show that this vision-based algorithm performs fairly well and can be applied to real situations.

음성에 의한 경로교시 기능과 충돌회피 기능을 갖춘 자율이동로봇의 개발 (Development of an Autonomous Mobile Robot with the Function of Teaching a Moving Path by Speech and Avoiding a Collision)

  • 박민규;이민철;이석
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.189-197
    • /
    • 2000
  • This paper addresses that the autonomous mobile robot with the function of teaching a moving path by speech and avoiding a collision is developed. The use of human speech as the teaching method provides more convenient user-interface for a mobile robot. In speech recognition system a speech recognition algorithm using neural is proposed to recognize Korean syllable. For the safe navigation the autonomous mobile robot needs abilities to recognize a surrounding environment and to avoid collision with obstacles. To obtain the distance from the mobile robot to the various obstacles in surrounding environment ultrasonic sensors is used. By the navigation algorithm the robot forecasts the collision possibility with obstacles and modifies a moving path if it detects a dangerous obstacle.

  • PDF

MCMC 방법을 이용한 자율주행 차량의 보행자 탐지 및 추적방법 (Pedestrian Detection and Tracking Method for Autonomous Navigation Vehicle using Markov chain Monte Carlo Algorithm)

  • 황중원;김남훈;윤정연;김창환
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.113-119
    • /
    • 2012
  • In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.

Moving Object Segmentation을 활용한 자동차 이동 방향 추정 성능 개선 (Moving Object Segmentation-based Approach for Improving Car Heading Angle Estimation)

  • 노치윤;정상우;김유진;이경수;김아영
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.130-138
    • /
    • 2024
  • High-precision 3D Object Detection is a crucial component within autonomous driving systems, with far-reaching implications for subsequent tasks like multi-object tracking and path planning. In this paper, we propose a novel approach designed to enhance the performance of 3D Object Detection, especially in heading angle estimation by employing a moving object segmentation technique. Our method starts with extracting point-wise moving labels via a process of moving object segmentation. Subsequently, these labels are integrated into the LiDAR Pointcloud data and integrated data is used as inputs for 3D Object Detection. We conducted an extensive evaluation of our approach using the KITTI-road dataset and achieved notably superior performance, particularly in terms of AOS, a pivotal metric for assessing the precision of 3D Object Detection. Our findings not only underscore the positive impact of our proposed method on the advancement of detection performance in lidar-based 3D Object Detection methods, but also suggest substantial potential in augmenting the overall perception task capabilities of autonomous driving systems.

Building a mathematics model for lane-change technology of autonomous vehicles

  • Phuong, Pham Anh;Phap, Huynh Cong;Tho, Quach Hai
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.641-653
    • /
    • 2022
  • In the process of autonomous vehicle motion planning and to create comfort for vehicle occupants, factors that must be considered are the vehicle's safety features and the road's slipperiness and smoothness. In this paper, we build a mathematical model based on the combination of a genetic algorithm and a neural network to offer lane-change solutions of autonomous vehicles, focusing on human vehicle control skills. Traditional moving planning methods often use vehicle kinematic and dynamic constraints when creating lane-change trajectories for autonomous vehicles. When comparing this generated trajectory with a man-generated moving trajectory, however, there is in fact a significant difference. Therefore, to draw the optimal factors from the actual driver's lane-change operations, the solution in this paper builds the training data set for the moving planning process with lane change operation by humans with optimal elements. The simulation results are performed in a MATLAB simulation environment to demonstrate that the proposed solution operates effectively with optimal points such as operator maneuvers and improved comfort for passengers as well as creating a smooth and slippery lane-change trajectory.

Design of Fuzzy Logic System for Mobile Robot based on Visual Servoing

  • Song, Un-Ji;Yoo, Seog-Hwan;Choi, Byung-Jae
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.113-117
    • /
    • 2005
  • This paper describes a visual control scheme, fuzzy logic system for visual servoing of an autonomous mobile robot. An existing communication autonomous mobile robot always needs to keep the object in image to detect the moving object. This is a problem in an autonomous mobile robot for spontaneous activity. To solve it, some features for an object are taken from an image and then use in the design of fuzzy logic system for decision of moving location and direction of visual servoing contrivance(apparatus). So continuous tracking is possible by moving the visual servoing contrivance. We present some simulation results and further studies in the Section of Simulation and Concluding Remarks.

  • PDF

EMOS: Enhanced moving object detection and classification via sensor fusion and noise filtering

  • Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.847-861
    • /
    • 2023
  • Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.

LRF 센서를 이용한 글로벌 맵 기반의 적응형 이동 장애물 회피 알고리즘 개발 (Development of Adaptive Moving Obstacle Avoidance Algorithm Based on Global Map using LRF sensor)

  • 오세권;이유상;이대현;김영성
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.377-388
    • /
    • 2020
  • 본 논문에서는 고정된 장애물이 포함된 글로벌 맵 환경에서 LRF 센서만을 가진 자율이동 로봇이 이동장애물을 회피하기 위한 알고리즘을 제안한다. 우선 이동장애물을 회피하기 위해 LRF 거리 센서 데이터와 글로벌 맵을 이용하여 이동장애물을 추출한다. 추출된 이동장애물과 자율이동 로봇의 상대적인 벡터 성분의 합을 이용해 타원 형태의 안전반경을 생성한다. 생성된 안전반경을 고려하여 자율이동 로봇이 이동장애물을 회피하고 목적지에 도착할 수 있도록 한다. 제안된 알고리즘을 검증하기 위해 정량적인 분석 방법을 사용하여 기존 알고리즘과 비교하고 분석한다. 분석 방법은 이동장애물이 없을 때를 기준으로 제안된 알고리즘과 기존의 알고리즘의 경로의 길이와 주행 시간을 비교한다. 제안된 알고리즘은 이동장애물의 상대적 속도와 방향을 고려하여 회피할 수 있어서 경로와 주행 시간 모두 기존의 알고리즘보다 높은 성능을 보인다.