• 제목/요약/키워드: Available water storage

검색결과 130건 처리시간 0.032초

기간별 저수 관리를 통한 소규모 댐의 밭 관개용수 확보 (Securement of Upland Irrigation Water in Small Dams through Periodical Management of Storage Level)

  • 김선주;이주용;김필식
    • 한국농공학회논문집
    • /
    • 제47권2호
    • /
    • pp.3-12
    • /
    • 2005
  • The objective of this study is securement of upland irrigation water using storage level management of small dams. However, it is not new development of water resources but securement of water using storage level management of existing dam. This study has enhanced the water utilization coefficient of dam, after extra available water had been calculated by application of periodical management storage level and this water is used to other water like the upland irrigation water demand. As the result of application, it can secure extra available water except the water requirement. Minimum extra available water except flood is about $20,000,000\;m^3$ and crop irrigation water demand of 10yr frequency is about $2,033,000\;m^3$ in Seongju. The utilization of crop irrigation water can be possible. And extra available water is about $3,102,000\;m^3$ in 2000, $1,959,000\;m^3$ in 2001 except flood period and crop irrigation water demand of 10yr frequency is about $2,272,000\;m^3$ in Donghwa. It is judged that extra available water cannot be used to crop irrigation water during the dry season in Dongwha. Consequently, when management storage level is determined and more efficient use of water is gotten like this study, water utilization coefficient will be enhanced.

관개용 댐의 효율적 저수관리를 통한 밭 관개 용수 확보 (Security of Upland Irrigation Water through the Effective Storage Management of Irrigation Dams)

  • 이주용;김선주;김필식
    • 한국농공학회논문집
    • /
    • 제48권2호
    • /
    • pp.13-23
    • /
    • 2006
  • In Korea, upland irrigation generally depends on the ground water or natural rainfall since irrigation water supplied from dams is mainly used for paddy irrigation, and only limited amount of irrigation water is supplied to the upland area. For the stable security of upland irrigation water, storage level of irrigation dams was simulated by the periods. A year was divided into 4 periods considering the irrigation characteristics. Through the periodical management of storage level, water utilization efficiency in irrigation dams could be enhanced and it makes available to secure extra available water from existing dams without new development of water resources. Two study areas, Seongju and Donghwa dam, were selected for this study. Runoff from the watersheds was simulated by the modified tank model and the irrigation water to upland crops was calculated by the Penman-Monteith method. The analyzed results showed that relatively sufficient extra available water could be secured for the main upland crops in Seongju area. In case of Donghwa area, water supply to non-irrigated upland was possible in normal years but extra water was necessary in drought years such as 1998 and 2001.

소규모 댐의 효과적 운영을 위한 저수관리 기법 개발 (Development of Storage Management Method for Effective Operation of Small Dams)

  • 김필식;김선주
    • 한국농공학회논문집
    • /
    • 제48권2호
    • /
    • pp.27-35
    • /
    • 2006
  • Large dams are managed with operation standard and flood forecasting systems, while small dams do not have management method generally. Shortage of water resources and natural disasters due to drought and flood raised public concerns for management of small dams. Most of small dams are irrigation dams, which need diversified water uses. However, the lack of systematic management of small dams have caused serious water wastage and increased natural disasters. Storage management method and system were developed to solve these problems in small dams. The system was applied to Seongju dam for effective management. The storage management method was established considering hydrology simulation and statistical analysis using the system. This method can bring additional available water, even in the same conditions of the water demand and the supply conditions of watershed. It can improve the flood control capacity and water utilization efficiency by' the flexible operation of storage space.

변온저장(變溫貯藏)에 따른 백미(白米)의 품질변화(品質變化)에 관(關)한 반응속도론적(反應速度論的) 연구(硏究) -1. 유효(有效) Lysine의 감소(減少)에 관(關)하여- (Kinetics of Quality Changes in Rice Stored under the Temperature Fluctuation -1. Loss of Available Lysine in Polished Rice-)

  • 김무남;강문선;전순실
    • 한국식품영양과학회지
    • /
    • 제13권2호
    • /
    • pp.181-187
    • /
    • 1984
  • Lysine is known as a limiting amino acid in rice. In addition, it is considered to be important in that it is easily non-activated by the browning reaction during processing or storage. The present study was designed to utilize a kinetic approach to analyse the effect of temperature and water activity on available lysine loss in rice. Simplified kinetic models were used to obtain the various kinetic parameters for available lysine loss in rice subjected to accelerated shelf-life tests (ASLT). These kinetic parameters were then used to predict protein quality loss under the non-steady state storage. The predicted losses were compared to the actual losses. As expected, available lysine loss was increased with increased temperature and water activity. The activation energies and $Q_{10}$ values for available lysine loss ranged from 4.03 to 5.10 Kcal/ mole and 1.22 to 1.27, respectively, The shelf-lives at $25^{\circ}C$, the time to reach 25% loss of the available lysine, which was derived from the accelerated shelf-life tests showed 67 to 107 days according to $a_w$'s. The amount of loss for the fluctuating condition was greater than that occurring at the mean temperature of $45^{\circ}C$. Actually, the differences in effective temperature for the fluctuating storage were between about 4 and $6^{\circ}C$. In predicting the extent of loss using constant state data, the predicted shelf-lives were 2 to 7 days shorter than the actual storage values.

  • PDF

소규모 댐의 저수관리 시스템 개발 (Development of Storage Management System for Small Dams)

  • 김필식;김선주
    • 한국농공학회논문집
    • /
    • 제47권3호
    • /
    • pp.15-25
    • /
    • 2005
  • Ninety tow percent of over 1,800 gate controlled dams in Korea are classified as small dams. The primary purpose of these small dams is to supply irrigation water. Therefore, while large dams can store as much as 80 percent of precipitation and thus are efficient to control flood, small dams are often lack of flood control function resulting in increased susceptibility drought and flood events. The purpose of this study is to develope a storage management model for irrigation dams occupying the largest portion of small dams. The proposed Storage Management Model (STMM) can be applied to the Seongju dam for efficient management. Besides, the operation standard is capable of analyzing additional available water, considering water demand and supply conditions of watershed realistically. And the model can improve the flood control capacity and water utilization efficiency by the flexible operation of storage space. Consequently, if the small dams are managed by the proposed Storage management model, it is possible to maximize water resources securance and minimize drought and flood damages.

빗물이용의 수문학적 평가: 2. 수문학적 평가 (Hydrological Evaluation of Rainwater Harvesting: 2. Hydrological Evaluation)

  • 김경준;유철상;윤주환
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.230-238
    • /
    • 2008
  • This study evaluated the economic aspect of the rainwater harvesting facilities by hydrologically analyzing the inflow, rainwater consumption, rainfall loss, tank storage, and overflow time series to derive the net rainwater consumption and the number of days of rainwater available. This study considers several rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology and Daejon World Cup Stadium and the results derived are as follows. (1) Increasing the water consumption decreases the number of days of rainwater available. (2) Due to the climate in Korea, a larger tank storage does not increase the amount and the number of days of water consumption during wet season (June to September), but a little in October. (3) Economic evaluation of the rainwater harvesting facilities considered in this study shows no net benefit (private benefit). (5) Flood reduction effect of rainwater harvesting facilities was estimated very small to be about 1% even in the case that 10% of all the basin is used as the rainwater collecting area.

Sentinel-2 위성영상을 활용한 농업용 저수지 가용수량 추정 (Estimation of Water Storage in Small Agricultural Reservoir Using Sentinel-2 Satellite Imagery)

  • 이희진;남원호;윤동현;장민원;홍은미;김태곤;김대의
    • 한국농공학회논문집
    • /
    • 제62권6호
    • /
    • pp.1-9
    • /
    • 2020
  • Reservoir storage and water level information is essential for accurate drought monitoring and prediction. In particular, the agricultural drought has increased the risk of agricultural water shortages due to regional bias in reservoirs and water supply facilities, which are major water supply facilities for agricultural water. Therefore, it is important to evaluate the available water capacity of the reservoir, and it is necessary to determine the water surface area and water capacity. Remote sensing provides images of temporal water storage and level variations, and a combination of both measurement techniques can indicate a change in water volume. In areas of ungauged water volume, satellite remote sensing image acts as a powerful tool to measure changes in surface water level. The purpose of this study is to estimate of reservoir storage and level variations using satellite remote sensing image combined with hydrological statistical data and the Normalized Difference Water Index (NDWI). Water surface areas were estimated using the Sentinel-2 satellite images in Seosan, Chungcheongnam-do from 2016 to 2018. The remote sensing-based reservoir storage estimation algorithm from this study is general and transferable to applications for lakes and reservoirs. The data set can be used for improving the representation of water resources management for incorporating lakes into weather forecasting models and climate models, and hydrologic processes.

소규모 댐의 운영기준 및 기법 연구 (A Study of Operation Standard and Method of Small Dams)

  • 김필식;김선주;이주용
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.260-265
    • /
    • 2005
  • The purpose of this study is to established a storage management method and operation standard for irrigation dams occupying the largest portion of small dams using storage management system. The system can be applied to seongju dam for effective management. The storage management method was established considering hydrology simulation and statistical analysis using the system. This method and operation standard are capable of analyzing additional available water, considering the water demand and supply of basin actually. It can improve the flood control capacity and water utilization efficiency by the flexible operation of storage space.

  • PDF

온도와 수분활성을 달리한 보리가루 저장시 유효 Lysine의 감소 (Decrease in Available Lysine of Barley Powders during Storage at Different Water Activities and Temperatures)

  • 송미영;정연화;전순실;김무남
    • 한국식품영양과학회지
    • /
    • 제17권4호
    • /
    • pp.283-289
    • /
    • 1988
  • 변온조건하에서 보리가루를 저장하였을 때 수분활성에 따른 avaible lysine의 손실을 반응속도론적으로 고찰한 결과 Avalilable lysine은 일차반응으로 감소하였으며 반응속도는 수분활성과 저장온도가 높을수록 빨랐고, 각 수분활성에서의 활성화 에너지는 $6.02{\sim}10.32Kcal/mole$, $Q_10$치는 $1.34{\sim}1.65$였다. Acelerated shelf-life test로부터 구한 $25^{\circ}C$에서의 shelf-life는 $60{\sim}216$일의 범위였으며 온도와 수분활성이 증가함에 따라 단축되었다. 변온조건에서의 실측치와 예측치를 비교한 결과 유효온도차는 $1.21{\sim}2.23^{\circ}C$였고 shelf-life는 실측치와 예측치가 약간 차이를 나타내었다.

  • PDF

Mass-balance 및 경제성 분석에 의한 빗물저류시설 적정 규모 산정 (Estimation of Optimum Capacity for Rainwater Storage Facilities based on Mass Balance and Economic Analysis)

  • 김영민;이상호;이정훈;김이호
    • 상하수도학회지
    • /
    • 제22권2호
    • /
    • pp.233-238
    • /
    • 2008
  • Recently, rainwater harvesting facilities have increasingly constructed mainly in elementary schools and government buildings. Nevertheless, few methods are available for efficient planning and design of rainwater harvesting facilities by considering the weather conditions and purpose of rainwater management in each site, which may lead to a construction of uneconomic facilities. The current method estimates the size of rainwater storage tank by multiplying the size of building or plottage with a certain ratio and has many limitations. In this study, we first developed a method for planning and design of rainwater storage facilities using $Rainstock^{TM}$ model, which is based on mass balance, and economic analysis. Then, the model was applied for the design of a rainwater harvesting facility in a building with the catchment area of $1,000m^2$. The model calculation indicated that the economic feasibility of rainwater harvesting depends on not only the size of storage tank but also the water usage rate. When the water usage rate is $1m^3/day$, the rainwater harvesting facility is not cost-effective regardless of the size of the storage tank. With increasing the water usage rate, the economical efficiency of the facility was improved for a specific size of the storage tank. Based on the model calculation, the optimum tank sizes for $5m^3/day$ and $10m^3/day$ of water usage rates were $24m^3$ and $57m^3$, respectively. It is expected that the model is useful for optimization of rainwater storage facilities in planning and designing steps.