• Title/Summary/Keyword: Axial Run-Out

Search Result 15, Processing Time 0.023 seconds

A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition (공구 중량조건에 의한 주축변위 특성연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

An analysis of cutting force according to specific force coefficients (비절삭저항 상수 변화에 따른 절삭력 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.108-116
    • /
    • 2014
  • Considering the run-out effect and cutting force coefficients, the cutting force profile of half immersion end-milling was analyzed in detail. The effects of three specific cutting-force coefficients and three edge-force coefficients are verified. Through a detailed investigation, it is proved that the radial cutting force coefficients and are the major factors which increase the cutting forces Fx and Fy in end-milling. However, the axial cutting force coefficients have no influence on the force Fx and Fy changes in end-milling. Also, the analyzed end-milling force model shows good consistency with the actual measured force with regard to Fx and Fy. Thus, this model can be used for the prediction of the force history in end-milling with run-out, and it incurs a different force history with different start and exit immersion angles as well as holding effects.

Clearance and preload effects on NRRO of miniaturc ball bearings with waviness

  • Kim, Y.C.;Choi, S.K.;Yoon, K.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.303-304
    • /
    • 2002
  • This paper presents theoretical analysis of the NRRO(the non-repeatable run-out) for a ball bearing with geometric imperfection. This imperfection contains ball size error, ball waviness, outer race waviness and inner race waviness. The 3D dynamic analysis of a ball bearing using the Newton-Raphson method is performed to calculate the displacement of shaft center. The radial and axial NRRO are simulated, and preload and clearance effects are investigated. Preload and clearance have significant effects on radial and axial NRRO of for miniature ball bearings.

  • PDF

NRRO analysis of HDD spindle ball bearings using the measured geometric imperfection (실측형상오차를 이용한 HDD 스핀들용 볼베어링의 NRRO 해석)

  • Kim, Young-Cheol;Choi, Sang-Kyu;Yoon, Ki-Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.369-374
    • /
    • 2002
  • This paper presents theoretical analysis of the NRRO(non-repeatable run-out) for a ball bearing with geometric imperfection. The 3DOF dynamic analysis of a ball bearing using the Newton-Raphson method is performed to calculate the displacement of shaft center. Frequency and magnitude characteristics of radial and axial vibrations are investigated. The ball form errors of the ball, the inner race, and the outer race in a HDD spindle ball bearing are precisely measured. NRRO of a ball bearing is analyzed by using the measured waviness data. It is concluded that dominant components of radial vibrations are ${\Large}f_c\;and\;2{\Larg}f_b{\pm}{\Large}f_c$, and dominant component of axial vibrations is $2{\Large}f_b$. These are generated by the size error and the second waviness of the balls.

  • PDF

Improvement of Machinability for QRO90 High Hardened Core Part by High Speed Machining (고속가공에 의한 고경도재 QRO90 코어부의 가공성 향상)

  • Gang, Myeong-Chang;Kim, Jeong-Seok;Lee, Deuk-U;Im, Yu-Eop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.101-106
    • /
    • 2002
  • This paper presents an experimental investigation of high speed machining of dies and molds. Several critical issues involved with the high speed machining of QRO90 tool steel of hardness up to HRc62, have been studied and explained from a detail analysis of experimental observations. The experiments were performed using ball end mills. The effect of different process parameters on tool life and surface finish produced was also investigated. The cutting parameters involved were; cutting speeds in the range of 100 to 40 / m/min, axial depth of cut from 0.1 to 0.5mm, pick feed of 0.1 to 0.5mm. Run out and acceleration signals were observed during the experiment to investigate cutting slates. Compressed air and flood coolant were used and the effect of coolant on tool life was also determined.

Determination of the Optimum Feed Rate by a Surface Roughness Model in a Face Milling Operation (표면노조 모델을 이용한 졍면밀링에서의 최적 이송속도 선정)

  • Baek, Dae-Kyun;Ko, Tae-Jo;Kim, Hee-Sool
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2508-2515
    • /
    • 1996
  • Determination of an optimal feed rate is valuable in the sense of the precision and efficient machining. In this regard, a new surface roughness model for the face milling operation that considered the radial and axal runouts of the inserts in the cutter body was developed. The validity of the model was proved through the cutting experiments, and the model is able to predict the real machined surface roughness exactly with the information of the insert runouts and the cutting conditions. From the estimated surface roughness value, the maximum feed rate that obtains a maximum naterial removal rate under the given surface roughness constraint can be selected by using a bisection method. Therefore, this mehod for optimizing the feed rate can be well applied to the using a bisection method. Therefore, this method for optimizing the feed rate can be well applied to the using selsction of the cutting condition during the NC data generation in CAM.

Performance Enhancement of a Low Speed Axial Compressor Utilizing Simultaneous Tip Injection and Casing Treatment of Groove Type

  • Taghavi-Zenouz, Reza;Behbahani, Mohammad Hosein Ababaf
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2017
  • Performance of a low speed axial compressor is enhanced through a proper configuration of blade row tip injection and casing treatment of groove type. Air injectors were mounted evenly spaced upstream of the blade row within the casing groove and were all aligned parallel to the compressor axis. The groove, which covers all the blade tip chord length, extends all-round the casing circumference. Method of investigation is based on solution of the unsteady form of the Navier-Stokes equations utilizing $k-{\omega}$ SST turbulence model. Extensive parametric studies have been carried out to explore effects of injectors' flow momentums and yaw angles on compressor performance, while being run at different throttle valve setting. Emphasis has been focused on situations near to stall condition. Unsteady numerical analyses for untreated casing and no-injection case for near stall condition provided to discover two well-known criteria for spike stall inception, i.e., blade leading edge spillage and trailing edge back-flow. Final results showed that with only 6 injectors mounted axially in the casing groove and at yaw angle of 15 degrees opposite the direction of the blade row rotation, with a total mass flow rate of only 0.5% of the compressor main flow, surprisingly, the stall margin improves by 15.5%.

Analysis of restrained steel beams subjected to heating and cooling Part I: Theory

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.

NRRO Analysis of a HDD Spindle Ball Bearing using Measured Geometric Imperfection (실측형상오차를 이용한 HDD 스핀들용 볼베어링의 NRRO 해석)

  • Kim, Young-Cheol;Park, Sang-Kyu;Yoon, Ki-Chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.341.1-341
    • /
    • 2002
  • This paper presents theoretical analysis of the NRRO(the non-repeatable run-out) for a ball bearing with geometric imperfection. The 3DOF dynamic analysis of a ball bearing using the Runge-Kutta method is performed to calculate the displacement of shaft center. Frequency and magnitude characteristics of radial and axial vibrations are investigated. The ball form errors of the ball, the inner race, and the outer race in a HDD spindle ball bearing are precisely measured. (omitted)

  • PDF

NRRO Analysis of 3.5" HDD Spindle Ball Bearings Utilizing the Measured Geometric Imperfection (실측형상오차를 이용한 3.5인치 HDD 스핀들 볼베어링의 NRRO 해석)

  • 이영근;최상규;윤기찬;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.585-591
    • /
    • 2003
  • It has been widely known that geometrical or form errors of ball bearings such as ball size error, ball waviness, inner and outer race waviness due to inherent manufacturing imperfection are one of the major sources of uncontrollable non-repeatable run-out (NRRO) vibration in HDD spindle motor. NRRO in HDD is also known to be the primary cause of limiting the storage capacity of HDD. In this paper, We performed vibration analysis for NRRO a ball bearing being used in 3.5" HDD spindle motor. To theoretically estimate NRRO considering the geometrical errors of ball bearing components, a simple three degrees of freedom model was proposed and then vibration analysis for axial and radial NRRO was conducted utilizing the measured geometric imperfection of a bearing with both the waviness magnitude and phase taken into account. Effects of bearing preload and clearance on NRRO was also investigated as an effort to predict their optimum values minimizing bearing NRRO.

  • PDF