• Title/Summary/Keyword: Axial temperature distributions

Search Result 52, Processing Time 0.02 seconds

An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine (가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究))

  • Kwon, K.R.;Ko, J.K.;Hong, S.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

An Experimental Study of the Modified Chemical Vapor Deposition Process -Temperature Distribution and Particle Deposition Measurements- (수정된 화학증착(MCVD)에 관한 실험적 연구 - 온도분포와 입자부착 측정)

  • 조재걸;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3057-3065
    • /
    • 1994
  • An experimental study has been made for heat transfer and particle deposition during the Modified Chemical Vapor Deposition process which is currently utilized to manufacture high quality optical waveguides. The distributions of tube wall temperatures, rates and efficiencies of particle deposition were measured. Results indicate that the temperature distributions of the tube wall in the axial direction yield the quasi-steady form in which temperature distributions fit in one curve if the relative distance from the moving torch is used as an axial coordinate. Due to the repeated heatings from the traversing torch, the wall temperatures are shown to reach the minimum ahead of torch and it is shown that the two torch formulation suggested by Park and Choi is valid to predict this minimum temperature. Measured wall temperatures, particle deposition efficiencies and tapered entry length are compared with the previous modelling results and shown to be in agreement.

Extended Graetz Problem Including Axial Conduction and Viscous Dissipation in Microtube

  • Jeong Ho-Eyoul;Jeong Jae-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.158-166
    • /
    • 2006
  • Extended Graetz problem in microtube is analyzed by using eigenfunction expansion to solve the energy equation. For the eigenvalue problem we applied the shooting method and Galerkin method. The hydrodynamically isothermal developed flow is assumed to enter the microtube with uniform temperature or uniform heat flux boundary condition. The effects of velocity and temperature jump boundary condition on the microtube wall, axial conduction and viscous dissipation are included. From the temperature field obtained, the local Nusselt number distributions on the tube wall are obtained as the dimensionless parameters (Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is obtained also in terms of these parameters.

Decaying temperature and dynamic response of a thermoelastic nanobeam to a moving load

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • The decaying temperature and dynamic response of a thermoelastic nanobeam subjected to a moving load has been investigated in the context of generalized theory of nonlocal thermoelasticity. The transformed distributions of deflection, temperature, axial displacement and bending moment are obtained by using Laplace transformation. By applying a numerical inversion method, the results of these fields are then inverted and obtained in the physical domain. Also, for a particular two models, numerical results are discussed and presented graphically. Some specific and special results are derived from the current study.

Correlation between Coil Configurations and Discharge Characteristics of a Magnetized Inductively Coupled Plasma

  • Cheong, Hee-Woon
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.222-228
    • /
    • 2016
  • Correlation between coil configurations and the discharge characteristics such as plasma density and the electron temperature in a newly designed magnetized inductively coupled plasma (M-ICP) etcher were investigated. Radial and axial magnetic flux density distributions as well as the magnetic flux density on the center of the substrate holder were controllable by placing multiple circular coils around the etcher. The plasma density increased up to 60.7% by arranging coils (or optimizing magnetic flux density distributions inside the etcher) properly although the magnetic flux density on the center of the substrate holder was fixed at 7 Gauss.

A Numerical study on current density and temperature distributions of IT-SOFC (IT-SOFC의 전류밀도 및 온도분포에 관한 수치해석 연구)

  • Sohn, Sang-Ho;Lee, Kyu-Jin;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3067-3072
    • /
    • 2008
  • A two-dimensional model for anode-supported IT-SOFCs is proposed in order to accurately consider the heat and mass transport processes with a fully-developed axial velocity profile in channel flow. A comprehensive micro model is employed to describe the electrochemical reaction in anode and cathode of SOFCs. This paper investigates the effects of operational parameters (inlet temperature, the amount of flow rate, and air flow rate) including flow configurations (co-flow and counter-flow) on the current density and temperature distributions in the IT-SOFCs.

  • PDF

Development of Axial Power Distribution Monitoring System Using Two-Level Encore Detector (상하부 2개의 노외계측기를 이용한 축방향 출력분포 감시계통 개발)

  • Chi, Sung-Goo;Song, Jae-Woong;Ahn, Dwak-Hwan;Kuh, Jung-Eui
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.294-301
    • /
    • 1989
  • The Axial Power Distribution Monitoring System(APDMS) program was developed to calculate a detailed axial power distribution using two-level excore detector, cold leg temperature and control rod position signals. The unnormalized two-level excore detector signals were corrected for the rod shadowing factor determined by control rod position and for the temperature shadowing factor calculated based on cold leg temperature. A shape annealing matrix was then applied to the corrected excore detector response to yield peripheral power. After the core average power was obtained using linear relationship bet-ween core average and peripheral power, the boundary point power correction coefficient was applied to core average power in order to obtain boundary power for both upper and lower core axial boundaries. Then, the axial power distribution was synthesized by spline approximation. In spite of burnup, power level, control rod postion and axial offset changes, the comparisons of axial power distributions between BOXER simulation program and APDMS results showed good agreements within 5% root mean square error for Kori Unit 3 Cycle 4.

  • PDF

Manufacturing and Temperature Measurements of a Sodium Heat Pipe

  • Lee, Byeong-In;Lee, Seong-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1533-1540
    • /
    • 2001
  • A high-temperature sodium stainless steel heat pipe was fabricated and its performance has been investigated. The working fluid was sodium and it was sealed inside a straight tube container made of stainless steel. The amount of sodium occupied approximately 20% of the total volume of the heat pipe and its weight was 65.7gram. The length of a stainless steel container is 1002mm and its outside diameter is 25.4mm. Performance tests were carried out in a room air condition under a free convective environment and the measured temperatures are presented. The start-up behavior of the heat pipe from a frozen state was investigated for various heat input values between 600W and 1205W. In steady state, axial temperature distributions of a heat pipe were measured and its heat transfer rates were estimated in the range of vapor temperature from 50$0^{\circ}C$ to 63$0^{\circ}C$. It is found that there are small temperature differences in the vapor core along the axial direction of a sodium heat pipe for the high operating temperatures. But for the range of low operating temperatures there are large temperature drops along the vapor core region of a sodium heat pipe, because a small vapor pressure drop makes a large temperature drop. The transition temperature was reached more rapidly in the cases of high heat input rate for the sodium heat pipe.

  • PDF

Heat Transfer by an Oscillating Flow in a Circular Pipe with Sinusoidal Wall Temperature Distributions (벽온도분포가 정현파인 원관에서 왕복유동에 의한 열전달 해석)

  • 이대영;박상진;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3208-3216
    • /
    • 1993
  • Heat transfer characteristics of the laminar oscillating flow in a circular pipe have been studied under the condition that the wall temperature of the pipe is distributed sinusoidally with the axial direction. The axial velocity was assumed to be uniform in radial direction and the temperature field was analyzed by means of the perturbation method. The results show that the difference between wall and section-time-averaged fluid temperature increases as the oscillating frequency increases and eventually converges to a constant value which is determined by the ratio of swept distance to the characteristic length of wall temperature distribution. Also it is shown that the dominant variable in the heat transfer process when swept distance ratio is greater than 1 is not thermal Womersley number(F) but thermal Womersley number multiplied by the square root of swept distance ratio. The variation of the time-averaged Nusselt number is obtained as a function of F. The results indicate that Nusselt number is proportional to $F_{\epsilon}^{1/2}$ when both of F and .epsilon. are much greater than 1.

A Study on the Characteristics of Air flow Fields with Velocity Uniformity in a Wind Tunnel (풍동장치 내 공기 유동장과 속도 균일도 특성에 대한 분석)

  • Han, Seok Jong;Lee, Sang Ho;Lee, Jae Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • Numerical simulations were carried out to analyze the flow characteristics of the wind tunnel. Flow field characteristics with velocity uniformity at the test sections are largely affected by inlet conditions of air flow rate and temperature. Axial average velocity of the flow field inside the test area was almost linearly decreased by 0.026% each 1m. The uniformity distributions of axial velocity showed the highest reduction rate of about 24% between nozzle outlets 1 ~ 2m. In addition, average velocity and the uniformity are increased with air temperature in the wind tunnel due to density variation. The results of this paper are expected to be useful for the basic design of wind tunnel and to be used for efficient design.