• 제목/요약/키워드: B-spline Fitting

검색결과 42건 처리시간 0.029초

연속 영상에서의 경계추출을 위한 유전자 알고리즘 기반의 B-spline 적합 (Genetic Algorithm based B-spline Fitting for Contour Extraction from a Sequence of Images)

  • 허훈;이정헌;채옥삼
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권5호
    • /
    • pp.357-365
    • /
    • 2005
  • 본 연구에서는 유사한 여러 물체들이 인접하여 나타나는 영상열로부터 물체들을 개별적으로 분리할 수 있는 B-spline 적합(fitting) 알고리즘을 제안한다. 기존의 스네이크(snake) 알고리즘들은 초기화의 어려움과 다수의 극점 존재로 인해서 이러한 영상자료에서 물체의 영역을 개별적으로 분리하는 데는 어려움이 있다. 본 연구에서는 이 문제를 극복하고 다양한 형태의 물체가 인접해 있는 유사한 물체들로부터 효과적으로 분할 할 수 있는 유전자(genetic) 알고리즘 기반 B-spline 적합방안을 제안한다. 실제 상황을 고려하여 생성된 영상자료와 실제 치아 CT 영상을 이용한 평가에서 제안된 방법은 서로 인접해 있는 유사한 형태와 자기의 물체들을 개별적으로 정확하게 분할할 수 있음을 보였다. 제안된 알고리즘의 결과는 이상적으로 추출된 영역과의 일치성과 false positive 오류 그리고 false negative오류가 계산되어 검증되었다.

특징점들의 적응적 선택에 근거한 B-spline 곡선근사 (B-spline Curve Approximation Based on Adaptive Selection of Dominant Points)

  • 이주행;박형준
    • 한국CDE학회논문집
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2006
  • This paper addresses B-spline curve approximation of a set of ordered points to a specified toterance. The important issue in this problem is to reduce the number of control points while keeping the desired accuracy in the resulting B-spline curve. In this paper we propose a new method for error-bounded B-spline curve approximation based on adaptive selection of dominant points. The method first selects from the given points initial dominant points that govern the overall shape of the point set. It then computes a knot vector using the dominant points and performs B-spline curve fitting to all the given points. If the fitted B-spline curve cannot approximate the points within the tolerance, the method selects more points as dominant points and repeats the curve fitting process. The knots are determined in each step by averaging the parameters of the dominant points. The resulting curve is a piecewise B-spline curve of order (degree+1) p with $C^{(p-2)}$ continuity at each knot. The shape index of a point set is introduced to facilitate the dominant point selection during the iterative curve fitting process. Compared with previous methods for error-bounded B-spline curve approximation, the proposed method requires much less control points to approximate the given point set with the desired shape fidelity. Some experimental results demonstrate its usefulness and quality.

Adaptive B-spline volume representation of measured BRDF data for photorealistic rendering

  • Park, Hyungjun;Lee, Joo-Haeng
    • Journal of Computational Design and Engineering
    • /
    • 제2권1호
    • /
    • pp.1-15
    • /
    • 2015
  • Measured bidirectional reflectance distribution function (BRDF) data have been used to represent complex interaction between lights and surface materials for photorealistic rendering. However, their massive size makes it hard to adopt them in practical rendering applications. In this paper, we propose an adaptive method for B-spline volume representation of measured BRDF data. It basically performs approximate B-spline volume lofting, which decomposes the problem into three sub-problems of multiple B-spline curve fitting along u-, v-, and w-parametric directions. Especially, it makes the efficient use of knots in the multiple B-spline curve fitting and thereby accomplishes adaptive knot placement along each parametric direction of a resulting B-spline volume. The proposed method is quite useful to realize efficient data reduction while smoothing out the noises and keeping the overall features of BRDF data well. By applying the B-spline volume models of real materials for rendering, we show that the B-spline volume models are effective in preserving the features of material appearance and are suitable for representing BRDF data.

THE COMPUTATION OF MULTIVARIATE B-SPLINES WITH APPLICATION TO SURFACE APPROXIMATIONS

  • KIM, HOI SUB
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권1호
    • /
    • pp.81-98
    • /
    • 1999
  • In spite of the well developed theory and the practical use of the univariate B-spline, the theory of multivariate B-spline is very new and waits its practical use. We compare in this article the multivariate B-spline approximation with the polynomial approximation for the surface fitting. The graphical and numerical comparisons show that the multivariate B-spline approximation gives much better fitting than the polynomial one, especially for the surfaces which vary very rapidly.

  • PDF

A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

  • He, Shanshan;Ou, Daojiang;Yan, Changya;Lee, Chen-Han
    • Journal of Computational Design and Engineering
    • /
    • 제2권4호
    • /
    • pp.218-232
    • /
    • 2015
  • Piecewise linear (G01-based) tool paths generated by CAM systems lack $G_1$ and $G_2$ continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA) is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA) to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1) an improved technique for initial control point determination over Dominant Point Method, (2) an algorithm that updates foot point parameters as needed, (3) analysis of the degrees of freedom of control points to insert new control points only when needed, (4) chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.

B-spline Curve Fitting 과 심플렉스법을 적용한 자동차 록업클러치 피스톤 형상최적설계에 관한 연구 (Study of Shape Optimization for Automobile Lock-up Clutch Piston Design with B-spline Curve Fitting and Simplex Method)

  • 김철;현석정;손종호;신세현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1334-1339
    • /
    • 2003
  • An efficient method is developed for the shape optimization of 2-D structures. The sequential linear programming is used for minimization problems. Selected set of master nodes are employed as design variables and assigned to move towards the normal direction. After adapting the nodes on the design boundary, the B-spline curves and mesh smoothing schemes are used to maintain the finite element in good quality. Finally, a numerical implementation of optimum design of an automobile torque converter piston subjected to pressure and centrifugal loads is presented. The results shows additional weight up to 13% may be saved after the shape optimization.

  • PDF

유전자 알고리즘을 이용한 B-spline 곡면 피팅 (B-spline Surface Fitting using Genetic Algorithm)

  • ;김동준;민경철;표상우
    • 대한조선학회논문집
    • /
    • 제46권1호
    • /
    • pp.87-95
    • /
    • 2009
  • The applicability of optimization techniques for hull surface fitting has been important in the ship design process. In this research, the Genetic Algorithm has been used as a searching technique for solving surface fitting problem and minimizing errors between B-spline surface and the ship's offset data. The encoded design variables are the location of the vertex points and parametric values. The sufficient accuracy in surface fitting implies not only various techniques for computer-aided design, but also the future production design.

무작위 데이터 근사화를 위한 유계오차 B-스플라인 근사법 (An Error-Bounded B-spline Fitting Technique to Approximate Unorganized Data)

  • 박상근
    • 한국CDE학회논문집
    • /
    • 제17권4호
    • /
    • pp.282-293
    • /
    • 2012
  • This paper presents an error-bounded B-spline fitting technique to approximate unorganized data within a prescribed error tolerance. The proposed approach includes two main steps: leastsquares minimization and error-bounded approximation. A B-spline hypervolume is first described as a data representation model, which includes its mathematical definition and the data structure for implementation. Then we present the least-squares minimization technique for the generation of an approximate B-spline model from the given data set, which provides a unique solution to the problem: overdetermined, underdetermined, or ill-conditioned problem. We also explain an algorithm for the error-bounded approximation which recursively refines the initial base model obtained from the least-squares minimization until the Euclidean distance between the model and the given data is within the given error tolerance. The proposed approach is demonstrated with some examples to show its usefulness and a good possibility for various applications.

곡면 측정을 위한 최소 자승 비-스플라인 Fitting (Least Square B-Spline Fitting For Surface Measurement)

  • Jung, Jong-Yun;Lisheng Li;Lee, Choon-Man;Chung, Won-Jee
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.79-85
    • /
    • 2003
  • An algorithm for fitting with Least Square is a traditional and an effective method in processing with experimental data. Due to the lack of definite representation, it is difficult to fit measured data with free curves or surfaces. B-Spline is usefully utilized to express free curves and surfaces with a few parameters. This paper presents the combination of these two techniques to process the point data measured from CMM and other similar instruments. This research shows tests and comparison of the simulation results from two techniques.

에너지 최소화에 근거한 B-spline curve fitting을 이용한 근사적 lofting 방법 (Approximate Lofting by B-spline Curve Fitting Based on Energy Minimization)

  • 박형준;김광수
    • 한국CDE학회논문집
    • /
    • 제4권1호
    • /
    • pp.32-42
    • /
    • 1999
  • Approximate lofting or skinning is one of practical surface modeling techniques well used in CAD and reverse engineering applications. Presented in this paper is a method for approximately lofting a given set of curves wihin a specified tolereance. It is based on refitting input curves simultaneously on a common knot vector and interpolating them to get a resultant NURBS surface. A concept of reducing the number of interior knots of the common knot vector is well adopted to acquire more compact representation for the resultant surface. Energy minimization is newly introduced in curve refitting process to stabilize the solution of the fitting problem and get more fair curve. The proposed approximate lofting provides more smooth surface models and realizes more efficient data reduction expecially when the parameterization and compatibility of input curves are not good enough. The method has been successfully implemented in a new CAD/CAM product VX Vision? of Varimetrix Corporation.

  • PDF