• Title/Summary/Keyword: BDNF

Search Result 242, Processing Time 0.027 seconds

The Effect of Sensory Stimulation and Therapeutic Environment on Expression of BDNF after Traumatic Brain Injury in the Rat (감각 자극과 치료적 환경이 외상성 뇌손상 흰쥐의 BDNF 발현에 미치는 영향)

  • Song, Ju-Min
    • PNF and Movement
    • /
    • v.5 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • Purpose : The purpose of this study was to test the effect of balance training for proprioceptive and vestibular sensory stimulation and therapeutic environment on expression of BDNF after traumatic brain injury in the rat. Subject : Twelve Sprague-Dawley rats were randomly assigned into group I and group II. After traumatic brain injury, group I was housed in standard cage for 7 days. Group II was housed in therapeutic cage after balance training for 7 days. Method : Traumatic brain injury was induced by weight drop model and after operation they were housed in individual standard cages for 24 hours. After 7th day, the rats were sacrificed and cryostat coronal sections were processed individually in goat polyclonal anti-BDNF antibody. The morphologic characteristics and the BDNF expression were investigated in injured hemisphere section from immunohistochemistry using light microscope. Result : Immunohistochemical response of BDNF in lateral nucleus, purkinje cell layer, superior vestibular nucleus and pontine nucleus appeared very higher in group II than in group I Conclusion : The present result revealed that simultaneously application of balance training for proprioceptive and vestibular sensory stimulation input and therapeutic environment in traumatic brain injured rats is enhance expression of BDNF and it is facilitates neural plasticity.

  • PDF

Alteration in Plasma BDNF Level after Repetitive Transcranial Magnetic Stimulation(rTMS) in Treatment-Resistant Schizophrenia : A Pilot Study (치료저항성 정신분열병 환자에서 반복적 경두개자기자극술 병행치료시 혈장 BDNF 농도 변화 : 예비 연구)

  • Oh, So-Young;Kim, Yong-Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.16 no.3
    • /
    • pp.170-180
    • /
    • 2009
  • Objectives : To assess clinical improvement and change in plasma brain-derived neurotrophic factor(BDNF) level after repetitive transcranial magnetic stimulation(rTMS) in patients with treatment-resistant schizophrenia. Methods : Seven patients with DSM-IV schizophrenia, who were proven to be treatment-resistant, were treated with 15 sessions of rTMS for three weeks as an adjuvant therapy to antipsychotic treatment. Clinical improvement and change in plasma BDNF level were measured after the treatment period. The symptom severity was assessed with the Positive and Negative Syndrome Scale(PANSS) and the Korean Version of Calgary Depression Scale for Schizophrenia(K-CDSS) at baseline and 7 days after the treatment. Plasma BDNF level was measured by enzyme-linked immunosorbent assay(ELISA) at baseline and 7 days after the treatment. Results : After the rTMS treatment, there was no significant improvement in PANSS total score(Z=-1.693, p=0.090) and no significant change in plasma BDNF was found(Z=-1.183, p=0.237). Negative correlations were found between percentage change in PANSS positive subscale score and duration of illness(rho=-0.991, N=7, p<0.0005, two-tailed), and PANSS negative subscale score at baseline and percentage change in plasma BDNF level(rho=-0.821, N=7, p=0.023, two-tailed). Conclusion : This preliminary study suggests that rTMS didn't make a significant change in clinical symptoms nor in plasma BDNF level in treatment-resistant schizophrenia. Percentage change in plasma BDNF, however, might be correlated with treatment resistance in schizophrenic patients. This is a pilot study with a small sample size, therefore, a further study with a larger sample size is needed.

  • PDF

Effects of Treadmill Exercise on Memory, Hippocampal Cell Proliferation, BDNF, TrkB, and Forebrain Cholinergic Cells in Adolescent Rats (트레드밀 운동이 청소년기 흰쥐의 기억력과 해마 신경세포생성, BDNF, TrkB, 그리고 전뇌 콜린 세포에 미치는 영향)

  • Lee, Hee-Hyuk
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.403-410
    • /
    • 2009
  • This study investigated the effects of treadmill exercise on memory ability, cell proliferation, BDNF, and TrkB in the hippocampus and forebrain cholinergic cells in adolescent rats. Male Sprague-Dawley rats (4 weeks old) were randomly assigned to the following two groups: the sedentary group (n=10) and the exercise group (n=10). Rats in the exercise group were forced to run on a treadmill for 30 min, five times per week for 4 weeks. The latency of the step-through avoidance task was used in order to evaluate memory ability. Hippocampal brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) expression were assessed by Western blotting. Hippocampal cell proliferation and forebrain cholinergic cells were assessed by immunohistochemistry. The present study showed that treadmill running during the adolescent period significantly improved memory capability, increased hippocampal cell proliferation, up-regulated hippocampal BDNF and TrkB expression, and enhanced the number of forebrain cholinergic cells. These results suggest that regular exercise during the adolescent period may enhance memory function.

Regulation of BDNF release in dopaminergic neurons

  • Jeon, Hong-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.743-746
    • /
    • 2003
  • The major pathological lesion in Parkinson's disease(PD) is selective degeneration and loss of pigmented dopaminergic neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to the dopaminergic cell death underlying the PD process is elusive, the potent neurotrophic factors (NTFs), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF), are known to exert dopaminergic neuroprotection both in vivo and in vitro models of PD employing the neurotoxin, MPTP. BDNF and its receptor, trkB are expressed in SN dopaminergic neurons and their innervation target. Thus, neurotrophins may have autocrine, paracrine and retrograde transport effects on the SN dopaminergic neurons. This study determined the BDNF secretion from SN dopaminergic neurons by ELISA. Regulation of BDNF synthesis/release and changes in signaling pathways are monitored in the presence of free radical donor, NO donor and mitochondrial inhibitors. Also, this study shows that BDNF is able to promote survival and phenotypic differentiation of SN dopaminergic neurons in culture and protect them against MPTP-induced neurotoxicity via MAP kinase pathway.

  • PDF

Isolation and Characterization of Brain-Derived Neurotrophic Factor Gene from Flounder (Paralichthys olivaceus)

  • LEE JAE HYUNG;CHOI TAE-JIN;NAM SOO WAN;KIM YOUNG TAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.838-843
    • /
    • 2005
  • Brain-derived neurotrophic factor (BDNF) is a small secretory protein and a member of the nerve growth factor (NGF) gene family. We cloned the flounder BDNF gene from a flounder brain cDNA library. The nucleotide sequence of the cloned gene showed an open reading frame (ORF) consisting of 810 bp, corresponding to 269 amino acid residues. The tissue distribution of flounder BDNF was determined by reverse transcription-polymerase chain reaction (RT-PCR) in brain, embryo, and muscle tissues. To express fBDNF using a eukaryotic expression system, we constructed the vector mpCTV-BDNF containing the fBDNF gene and transformed this vector into Chlorella ellipsoidea. Stable integration of introduced DNA was confirmed by PCR analysis of genomic DNA, and mRNA expression in C. ellipsoidae was confirmed by RT-PCR analysis.

Serum Brain-Derived Neurotrophic Factor in Schizophrenia (정신분열병 환자의 혈청에서 Brain-Derived Neurotrophic Factor 증가)

  • Kim, So Youn;Min, Kyung Joon;Kee, Baik Seok;Park, Doo Byung;Kim, Joo Hee
    • Korean Journal of Biological Psychiatry
    • /
    • v.11 no.2
    • /
    • pp.104-109
    • /
    • 2004
  • Objectives:Abnormalities in neurotrophic factors that regulate neuronal development and synaptic plasticity are often implicated as some causes of schizophrenia. In previous studies, researchers reported that brain and serum BDNF levels underwent similar changes during maturation and aging processes in rats. They also found a positive correlation between serum and cortical BDNF levels. In this study, we investigated whether the serum levels of BDNF in Korean schizophrenic patients would be different from those of healthy controls. Methods:Using an ELISA kit, serum BDNF levels were assessed in schizophrenic group(N=49) and control group(N=50). Results:Serum BDNF levels in the schizophrenic group($36.29{\pm}19.78$ng/ml) were significantly higher than those in control group($22.4{\pm}14.4$ng/ml). The BDNF levels did not correlate with duration of treatment, age or daily dose of antipsychotics in patients with schizophrenia. Conclusions:This result suggests that schizophrenia is characterized by high serum BDNF levels and supports the hypothesis of neurotrophic factor involvement in psychotic disorder. Serum BDNF level is likely to be one of the possible biological markers for schizophrenia.

  • PDF

The Role of Job Stress and Brain-Derived Neurotrophic Factor Gene Polymorphism on the Severity of Alcohol Drinking in Korean Office Workers in Their Twenties (20대 한국 직장인의 음주 심각도에 대한 직무 스트레스와 BDNF 유전자 다형성의 역할)

  • Kim, Bo-Ah;Lee, Sang-Ick;Kim, Sie-Kyeong;Shin, Chul-Jin;Son, Jung-Woo;Hong, Joo-Bong;Nam, Yeong-Woo;Ju, Ga-Won
    • Korean Journal of Biological Psychiatry
    • /
    • v.19 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Objectives : The aim of this study was to examine the effects of brain-derived neurotrophic factor (BDNF) genetic polymorphism and job stress on the severity of alcohol drinking. It was hypothesized that individuals with the Met/Met BDNF genotype would be more vulnerable than those carrying the Val allele. Methods : Participants were 133 healthy Korean adults (mean age $28.2{\pm}1.1$). Job stress and the severity index of drinking were investigated through self-reported questionnaires. BDNF (rs6265) gene was genotyped. Results : There was no significant association between job stress and the severity of alcohol drinking. Although the severity of alcohol drinking was not associated with BDNF genetic polymorphism, there was a significant difference in men according to genotype and job stress. Men with homozygous BDNF Met allele were more severe in alcohol drinking when job stress was high, less severe in alcohol drinking when job stress was low than those carrying the Val allele (F = 4.47, p = 0.038). Also higher level of job stress was correlated with higher severity of alcohol drinking in men homozygous for BDNF Met allele (rs = 0.620, p = 0.005). Conclusions : These findings suggest the possibility that Met allele could have differential susceptibility, with men homozygous for BDNF Met allele being more susceptible to both more adverse and less adverse environmental influences.

Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression

  • Wang, Guoli;An, Tianyue;Lei, Cong;Zhu, Xiaofeng;Yang, Li;Zhang, Lianxue;Zhang, Ronghua
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.376-386
    • /
    • 2022
  • Background: Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) plays a critical role in the pathogenesis of depression by modulating synaptic structural remodeling and functional transmission. Previously, we have demonstrated that the ginsenoside Rb1 (Rb1) presents a novel antidepressant-like effect via BDNF-TrkB signaling in the hippocampus of chronic unpredictable mild stress (CUMS)-exposed mice. However, the underlying mechanism through which Rb1 counteracts stress-induced aberrant hippocampal synaptic plasticity via BDNF-TrkB signaling remains elusive. Methods: We focused on hippocampal microRNAs (miRNAs) that could directly bind to BDNF and are regulated by Rb1 to explore the possible synaptic plasticity-dependent mechanism of Rb1, which affords protection against CUMS-induced depression-like effects. Results: Herein, we observed that brain-specific miRNA-134 (miR-134) could directly bind to BDNF 30 UTR and was markedly downregulated by Rb1 in the hippocampus of CUMS-exposed mice. Furthermore, the hippocampus-targeted miR-134 overexpression substantially blocked the antidepressant-like effects of Rb1 during behavioral tests, attenuating the effects on neuronal nuclei-immunoreactive neurons, the density of dendritic spines, synaptic ultrastructure, long-term potentiation, and expression of synapse-associated proteins and BDNF-TrkB signaling proteins in the hippocampus of CUMS-exposed mice. Conclusion: These data provide strong evidence that Rb1 rescued CUMS-induced depression-like effects by modulating hippocampal synaptic plasticity via the miR-134-mediated BDNF signaling pathway.

Effect of Single Growth Factor and Growth Factor Combinations on Differentiation of Neural Stem Cells

  • Choi, Kyung-Chul;Yoo, Do-Sung;Cho, Kyung-Sock;Huh, Pil-Woo;Kim, Dal-Soo;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.6
    • /
    • pp.375-381
    • /
    • 2008
  • Objective : The effects on neural proliferation and differentiation of neural stem cells (NSC) of basic fibroblast growth factor-2 (bFGF). insulin growth factor-I (IGF-I). brain-derived neurotrophic factor (BDNF). and nerve growth factor (NGF) were assessed. Also, following combinations of various factors were investigated : bFGF+IGF-I, bFGF+BDNF, bFGF+NGF, IGF-I+BDNF, IGF-I+NGF, and BDNF+NGF. Methods : Isolated NSC of Fisher 344 rats were cultured with individual growth factors, combinations of factors, and no growth factor (control) for 14 days. A proportion of neurons was analyzed using $\beta$-tubulin III and NeuN as neural markers. Results : Neural differentiations in the presence of individual growth factors for $\beta$-tubulin III-positive cells were : BDNF, 35.3%; IGF-I, 30.9%; bFGF, 18.1%; and NGF, 15.1%, and for NeuN-positive cells was : BDNF, 34.3%; bFGF, 32.2%; IGF-I, 26.6%; and NGF, 24.9%. However, neural differentiations in the absence of growth factor was only 2.6% for $\beta$-tubulin III and 3.1% for NeuN. For $\beta$-tubulin III-positive cells, neural differentiations were evident for the growth factor combinations as follows : bFGF+IGF-I, 73.1 %; bFGF+NGF, 65.4%; bFGF+BDNF, 58.7%; BDNF+IGF-I, 52.2%; NGF+IGF-I, 40.6%; and BDNF+NGF, 40.0%. For NeuN-positive cells : bFGF+IGF-I, 81.9%; bFGF+NGF, 63.5%; bFGF+BDNF, 62.8%; NGF+IGF-I, 62.3%; BDNF+NGF, 56.3%; and BDNF+IGF-I, 46.0%. Significant differences in neural differentiation were evident for single growth factor and combination of growth factors respectively (p<0.05). Conclusion : Combinations of growth factors have an additive effect on neural differentiation. The most prominent neural differentiation results from growth factor combinations involving bFGF and IGF-I. These findings suggest that the combination of a mitogenic action of bFGF and post-mitotic differentiation action of IGF-I synergistically affects neural proliferation and NSC differentiation.

Synergistic Increase of BDNF Release from Rat Primary Cortical Neuron by Combination of Several Medicinal Plant-Derived Compounds

  • Jeon, Se-Jin;Bak, Hae-Rang;Seo, Jung-Eun;Kwon, Kyung-Ja;Kang, Young-Sun;Kim, Hee-Jin;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Ko, Kwang-Ho;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor involved in neuronal differentiation, plasticity, survival and regeneration. BDNF draws massive attention mainly due to the potential as a therapeutic target in neurological diseases such as depression and Alzheimer's disease. In a primary screening for the natural compounds enhancing BDNF release from cultured rat primary cortical neuron, we found that compounds such as baicalein, tanshinone IIa, cinnamic acid, epiberberine, genistein and wogonin among many others increased BDNF release. All the compounds at $0.1{\mu}M$ of concentration barely showed stimulatory effect on BDNF induction, however, their combination (mixture 1; baicalein, tanshinone IIa and cinnamic acid, mixture 2; epiberberine, genistein and wogonin) showed synergistic increase in BDNF release as well as mRNA and protein expression. The level of BDNF expression was comparable to the maximum BDNF stimulation attainable by a positive control oroxylin A ($20{\mu}M$) without cell toxicity as determined by MTT analysis. Both mixtures synergistically increased the phosphorylation of extracellular signal-regulated kinase (ERK) as well as cAMP response element binding protein (CREB), an immediate and essential regulator of BDNF expression. Similar to these results, mixture of these compounds synergistically inhibited the up-regulation of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide treatments in rat primary astrocytes. These results suggest that the combinatorial treatment of natural compounds in lower concentration might be a useful strategy to obtain sufficient BDNF stimulation in neurological disease condition such as depression, while minimizing potential side effects and toxicity of higher concentration of a single compound.