• Title/Summary/Keyword: BDNF

Search Result 242, Processing Time 0.025 seconds

Influence of Erythropoiesis Factors, BDNF, Cognitive Function and Working Memory by Intensity Aerobic Exercise in Middle Aged Women (강도별 유산소운동이 중년여성의 적혈구생성인자, BDNF와 인지기능, 작업기억에 미치는 영향)

  • Cho, Won-Je
    • 한국체육학회지인문사회과학편
    • /
    • v.54 no.1
    • /
    • pp.553-566
    • /
    • 2015
  • This study was performed to identify the effects of different intensities of regular aerobic exercise on erythropoietin (EPO) and BDNF levels, and cognitive function and working memory in middle-aged women. Women aged 40 to 60 years residing in G-gu, Y-si, Gyeonggi-do were divided into 3 groups: control group, moderate-intensity aerobic exercise group and high-intensity aerobic exercise. All groups were asked to exercise at the given intensities, twice a week for a total of 12 weeks. Blood samples were collected from participants on week 0 (before exercising), week 6 and week 12, and then cognitive function and working memory tests were followed to measure erythropoietin (EPO) and BDNF levels, cognitive function and working memory. Repeated measures ANOVA, univariate analysis and follow-up test were performed on all data to compare the group, period and interaction through a SPSS. As a result, a significant difference over time was observed in EPO, BDNF, cognitive function and working memory; therefore, a follow-up one-way ANOVA analysis was performed on each group. As a result of analysis, a significant increase in erythrocyte, hematocrit, BDNF level and working memory was observed in moderate-intensity aerobic exercise group while erythrocyte and working memory were significantly increased inhigh-intensity aerobic exercise group. When comparing the results between the groups, the level of hematocrit was shown to be significantly higher in both moderate-and high-intensity aerobic group than the control group and also the higher level of hemoglobin was observed in both moderate-and high-intensity aerobic group comparing to control group. Considering the results of this study, therefore, a 12-week long aerobic exercise at moderate to high intensity positively affected EPO and BDNF levels, cognitive function and working memory in middle-aged women.

Distinct Effect of Neurotrophins Delivered Simultaneously by an Adenoviral Vector on Neurite Outgrowth of Neural Precursor Cells from Different Regions of the Brain

  • Yoo, Min-Joo;Joung, In-Sil;Han, Ah-Mi;Yoon, Hye-Hyun;KimKwon, Yun-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2033-2041
    • /
    • 2007
  • For many years, it has been demonstrated that neurotrophins regulate the adult nervous system, implicating their potential as therapeutic agents for the treatment of neurodegenerative diseases. We generated adenoviral vectors encoding brain-derived neutotrophin factor (BDNF) and neurotrophin-3 (NT3) and tested either separately or together for the ability to induce differentiation of neuronal precursor cells with two different origins. Separate transduction of adenovirus delivering BDNF (BDNF-Ad) or NT3 (NT3-Ad) induced the neuronal differentiation in hippocampal and cortical precursor cells. NT3-Ad infected cells extended short neurites, whereas BDNF-Ad infected cells had longer neurites. In the early differentiation of hippocampal precursor cells, simultaneous infection of BDNF-Ad and NT3-Ad promoted further differentiation and neurite elongation compared with the separate infection of each virus. In contrast, simultaneous infection did not show the synergistic effect in the cortical precursor cells, suggesting that the neurotrophins play distinct roles in different regions of the brain. However, the numbers of neurites and spines per differentiated cells were markedly increased in cortical as well as hippocampal precursor cells, indicating the promotion of efficient neurite elongation and formation of dendritic spine, when BDNF-Ad and NT3-Ad were co-infected. These results suggest more studies in the effect of a combinatorial use of neurotrophins on different sites of brain need to be carried out to develop gene therapy protocols for neurodegenerative diseases.

Convergence Study on the Effects of Using Convergence Aerobic Exercise on the Brain-derived neurotrophic factor and Blood Lipids in Elderly Women with Mild Dementia (유산소 운동이 경증치매 여성노인의 BDNF 및 혈중지질에 미치는 효과에 관한 융합 연구)

  • Nam, Sang-Nam;Lim, Youn-Sub
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.345-353
    • /
    • 2017
  • This study attempts to explore changes in the BDNF and blood lipid level through a 12-week aerobic exercise program aimed at the elderly women of a misdemeanor dementia, and was carried out for 3 times a week, 50 minutes each with the exercise angle 9-14. The following conclusions were obtained through this purpose and procedure. First, the results of BDNF showed a significant increase in the exercise group after conducting a 12-week aerobic exercise program. Second, after a 12-week aerobic exercise program in the athletic group, the results of the blood stop has showed the reduction of both total cholesterol and low density lipoprotein cholesterol, and the amount of high density lipoprotein cholesterol has increased. Therefore, the aerobic exercise program conducted in this study has a positive effect on lipid improvement along with dementia prevention, and through it helps to improve the quality of life of the elderly including significant improvement in physical and mental health.

Enhancement of BDNF Production by Co-cultivation of Human Neuroblastoma and Fibroblast Cells

  • Hong, Jong-Soo;Oh, Se-Jong;Kim, Sun-Hee;Park, Kwon-Tae;Cho, Jin-Sang;Park, Kyung-You;Lee, Jin-Ha;Lee, Hyeon-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.51-54
    • /
    • 1998
  • It has been proved that co-cultivation of human neroblastoma cells and human fibroblast cells can enhance nerve cell growth and the production of BDNF in perfusion cultivation. In batch co-cultivation, maximum cell density was increased up to 1.76${\times}$106 viable cells/mL from 9${\times}$105 viable cells/mL of only neuroblastoma cell culture. The growth of neuroblastoma cells was greatly improved by culturing both nerve and fibroblast cells in a perfusion process, maintaining 1.5${\times}$106 viable cells/mL, which was much higher than that form fed-batch cultivation. The nerve cell growth was greatly enhance in both fed-batch and perfusion cultivations while the growth of fibroblast cells was not. It strongly implies that the factors secreted from human fibrobast cells and/or the environments of co-culture system can enhance both cell growth and BDNF secretion. Specific BDNF production rate was not enhanced in co-cultures; however, the production period was increased as the cell growth was lengthened in the co-culture case. Competitive growth between nerve cells and fibroblast cells was not observed in all cases, showing no changes of fibroblast cell growth and only enhancement of the neuroblastoma cell growth and overall BDNF production. It was also found that the perfusion cultivation was the most appropriate process for cultivating two cell lines simultaneously in a bioreactor.

  • PDF

The Effect of the Swimming Exercise on Motor Functional Recovery after Experimental Contusive Spinal Cord Injury in the Rats (척수손상 흰쥐에서 수영훈련이 운동기능 회복에 미치는 영향)

  • Kim, Young-Eok;Kim, Kyung-Yoon
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2007
  • Purpose: Previous studies have suggested that BDNF has a role in plasticity and survival following spinal cord injury and treadmill exercise increases BDNF levels in the normal brain and spinal cord. We attempted to determine whether swimming exercise improve motor function following experimental contusive spinal cord injury and whether motor outcome is associated with BDNF expression. Methods: Thirty six Sprague-Dawley rats (weight, 250 to 300 g) were divided into control (n=18) and experimental swimming group (n=18). Spinal cord injury was produced using NYU-spinal impactor at the eleven thoracic levels in both groups. Swimming exercise started $7^{th}$ day from SCI operation, lasted 5 min per day, 5 days a week for 4 weeks and then exercise times a day were increased in one number to each week. Motor functional recovery was determined by the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, modified inclined board plane test, histological findings, H&E and BDNF expression observed at $1^{th}$, $3^{rd}$, $7^{th}$, $14^{th}$, $21^{st}$ and $28^{th}$day after injury. Results: 1. The BBB scores were higher in experimental group than control group at $14^{th}$, $21^{st}$ day (left hind limb) and at $21^{th}$ day (right hind limb) (p<0.05) after injury. 2. The inclined board plane test were significantly greater in experimental group than control group at $7^{th}$ day (p<0.05), $14^{th}$ and $28^{th}$ day (p<0.01) after injury. 3. The BDNF expression was severe revealed in experimental group than control group at $7^{th}$, $14^{th}$ and $28^{th}$ day after injury. Conclusion: This study suggests that swimming applied from the early phase after spinal cord injury be beneficial effects in motor functional recovery.

  • PDF

Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling

  • Jiang, Tao;Wang, Xiu-qin;Ding, Chuan;Du, Xue-lian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.579-589
    • /
    • 2017
  • Anesthetics are used extensively in surgeries and related procedures to prevent pain. However, there is some concern regarding neuronal degeneration and cognitive deficits arising from regular anesthetic exposure. Recent studies have indicated that brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are involved in learning and memory processes. Genistein, a plant-derived isoflavone, has been shown to exhibit neuroprotective effects. The present study was performed to examine the protective effect of genistein against isoflurane-induced neurotoxicity in rats. Neonatal rats were exposed to isoflurane (0.75%, 6 hours) on postnatal day 7 (P7). Separate groups of rat pups were orally administered genistein at doses of 20, 40, or 80 mg/kg body weight from P3 to P15 and then exposed to isoflurane anesthesia on P7. Neuronal apoptosis was detected by TUNEL assay and FluoroJade B staining following isoflurane exposure. Genistein significantly reduced apoptosis in the hippocampus, reduced the expression of proapoptotic factors (Bad, Bax, and cleaved caspase-3), and increased the expression of Bcl-2 and Bcl-xL. RT-PCR analysis revealed enhanced BDNF and TrkB mRNA levels. Genistein effectively upregulated cAMP levels and phosphorylation of CREB and TrkB, leading to activation of cAMP/CREB-BDNF-TrkB signaling. PI3K/Akt signaling was also significantly activated. Genistein administration improved general behavior and enhanced learning and memory in the rats. These observations suggest that genistein exerts neuroprotective effects by suppressing isoflurane-induced neuronal apoptosis and by activating cAMP/CREB-BDNF-TrkB-PI3/Akt signaling.

Association between BDNF and Antidepressant Effects of Exercise in Youth: A Preliminary Study (아동청소년에서 운동의 항우울 효과와 BDNF와의 관련성에 대한 예비 연구)

  • Lim, You Bin;Kim, Jun Won;Hong, Soon-Beom;Kim, Jae-Won
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.27 no.1
    • /
    • pp.72-81
    • /
    • 2016
  • Objectives: The purpose of this study was to evaluate anti-depressive effects of exercise on child and adolescent and its association with brain derived neurotrophic factor (BDNF). Methods: Twenty nine middle school boys (age $13.3{\pm}0.7$) were divided into two groups, 15 boys for control group and 14 in the experimental group. The control group participated in a regular exercise program, 3 times a week for 15 weeks. During the same period, the experimental group participated in an aerobic exercise program specifically designed to enhance anti-depressive effect of exercise. Serum BDNF level and its performance of each group on the Beck Depression Index (BDI), Children's Depression Inventory (CDI), Screen for Child Anxiety Related Emotional Disorders (SCARED), Aggression Questionnaire (AK-Q), and Stroop task were compared before and after the exercise program. Results: Scores of BDI, CDI, SCARED, and AK-Q were significantly lower in both groups after the exercise programs compared to those before the programs. The Stroop task performances were significantly improved after the programs. However, there were no significant differences between two exercise programs, except SCARED separation anxiety, AK-Q physical, and verbal aggression scores. Also, no association was found between serum BDNF level and anti-depressive effects of exercise. Conclusion: Our preliminary results suggest a possible effect of exercise on depression, anxiety, aggression, and cognition of child and adolescents.

Nerve Growth Factor Activates Brain-derived Neurotrophic Factor Promoter IV via Extracellular Signal-regulated Protein Kinase 1/2 in PC12 Cells

  • Park, So Yun;Lee, Ji Yun;Choi, Jun Young;Park, Mae Ja;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.237-243
    • /
    • 2006
  • Brain-derived neurotrophic factor (BDNF) is a neuromodulator of nociceptive responses in the dorsal root ganglia (DRG) and spinal cord. BDNF synthesis increases in response to nerve growth factor (NGF) in trkA-expressing small and medium-sized DRG neurons after inflammation. Previously we demonstrated differential activation of multiple BDNF promoters in the DRG following peripheral nerve injury and inflammation. Using reporter constructs containing individual promoter regions, we investigated the effect of NGF on the multiple BDNF promoters, and the signaling pathway by which NGF activates these promoters in PC12 cells. Although all the promoters were activated 2.4-7.1-fold by NGF treatment, promoter IV gave the greatest induction. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, phosphatidylinositol 3-kinase (PI-3K) inhibitor, LY294003, protein kinase A (PKA) inhibitor, H89, and protein kinase C (PKC) inhibitor, chelerythrine, had no effect on activation of promoter IV by NGF. However, activation was completely abolished by the MAPK kinase (MEK) inhibitors, U0126 and PD98059. In addition, these inhibitors blocked NGF-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) 1/2. Taken together, these results suggest that the ERK1/2 pathway activates BDNF promoter IV in response to NGF independently of NGF-activated signaling pathways involving PKA and PKC.

Alcohol exposure induces depression-like behavior by decreasing hippocampal neuronal proliferation through inhibition of the BDNF-ERK pathway in gerbils

  • Kim, Ji-Eun;Ji, Eun-Sang;Seo, Jin-Hee;Lee, Moon-Hyoung;Cho, Se-Hyung;KimPak, Young-Mi;Seo, Tae-Beom;Kim, Chang-Ju
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.190-197
    • /
    • 2012
  • Depression is one of the most prevalent diseases of alcohol abuse. Brain-derived neurotrophic factor (BDNF) plays a critical role in cell survival in the hippocampus. Phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2) is induced by BDNF, and it regulates cell proliferation and differentiation in the brain. We investigated the effects of alcohol intake on depression-like behavior, cell proliferation, expressions of BDNF and its downstream molecules in the hippocampus using Mongolian gerbils. The gerbils were divided into four groups: control group, 0.5 g/kg alcohol-treated group, 1 g/kg alcohol-treated group, 2 g/kg alcohol-treated group. Each dose of alcohol was orally administered for 3 weeks. The present results demonstrated that alcohol intake induced depression-like behavior. Both 5-hydroxytryptamine synthesis and its synthesizing enzyme tryptophan hydroxylase expression in the dorsal raphe and cell proliferation in the hippocampal dentate gyrus were decreased by alcohol intake. Alcohol intake suppressed BDNF expression, and resulted in the decrease of its downstream molecules, pERK1/2 and Bcl-2, in the hippocampus. We showed that alcohol intake may lead to a depressed-like state with reduced hippocampal cell proliferation through inhibition of the BDNF-ERK signaling pathway.

PERIPHERAL NERVE REGENERATION USING POLYGLYCOLIC ACID CONDUIT AND BRAIN-DERIVED NEUROTROPHIC FACTOR GENE TRANSFECTED SCHWANN CELLS IN RAT SCIATIC NERVE (BDNF 유전자 이입 슈반세포와 PGA 도관을 이용한 백서 좌골신경 재생에 관한 연구)

  • Choi, Won-Jae;Ahn, Kang-Min;Gao, En-Feng;Shin, Young-Min;Kim, Yoon-Tae;Hwang, Soon-Jeong;Kim, Nam-Yeol;Kim, Myung-Jin;Jo, Seung-Woo;Kim, Byung-Soo;Kim, Yun-Hee;Kim, Soung-Min;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.6
    • /
    • pp.465-473
    • /
    • 2004
  • Purpose : The essential triad for nerve regeneration is nerve conduit, supporting cell and neurotrophic factor. In order to improve the peripheral nerve regeneration, we used polyglycolic acid(PGA) tube and brain-derived neurotrophic factor(BDNF) gene transfected Schwann cells in sciatic nerve defects of SD rat. Materials and methods : Nerve conduits were made with PGA sheet and outer surface was coated with poly(lactic-co-glycolic acid) for mechanical strength and control the resorption rate. The diameter of conduit was 1.8mm and the length was 17mm Schwann cells were harvested from dorsal root ganglion(DRG) of SD rat aged 1 day. Schwann cells were cultured on the PGA sheet to test the biocompatibility adhesion of Schwann cell. Human BDNF gene was obtained from cDNA library and amplified using PCR. BDNF gene was inserted into E1 deleted region of adenovirus shuttle vector, pAACCMVpARS. BDNF-adenovirus was multiplied in 293 cells and purified. The BDNF-Adenovirus was then infected to the cultured Schwann cells. Left sciatic nerve of SD rat (250g weighing) was exposed and 14mm defects were made. After bridging the defect with PGA conduit, culture medium(MEM), Schwann cells or BDNF-Adenovirus infected Schwann cells were injected into the lumen of conduit, respectively. 12 weeks after operation, gait analysis for sciatic function index, electrophysiology and histomorphometry was performed. Results : Cultured Schwann cells were well adhered to PGA sheet. Sciatic index of BDNF transfected group was $-53.66{\pm}13.43$ which was the best among three groups. The threshold of compound action potential was between 800 to $1000{\mu}A$ in experimental groups which is about 10 times higher than normal sciatic nerve. Conduction velocity and peak voltage of action potential of BDNF group was the highest among experimental groups. The myelin thickness and axonal density of BDNF group was significantly greater than the other groups. Conclusion : BDNF gene transfected Schwann cells could regenerate the sciatic nerve gap(14mm) of rat successfully.