• Title/Summary/Keyword: BIMS

Search Result 14, Processing Time 0.021 seconds

Development of Bioelectric Impedance Measurement System Using Multi-Frequency Applying Method

  • Kim, J.H.;Jang, W.Y.;Kim, S.S.;Son, J.M.;Park, G.C.;Kim, Y.J.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.368-376
    • /
    • 2014
  • In order to measure the segmental impedance of the body, a bioelectrical impedance measurement system (BIMS) using multi-frequency applying method and two-electrode method was implemented in this study. The BIMS was composed of constant current source, automatic gain control, and multi-frequency generation units. Three experiments were performed using the BIMS and a commercial impedance analyzer (CIA). First, in order to evaluate the performance of the BIMS, four RC circuits connected with a resistor and capacitor in serial and/or parallel were composed. Bioelectrical impedance (BI) was measured by applying multi-frequencies -5, 10, 50, 100, 150, 200, 300, 400, and 500 KHz - to each circuit. BI values measured by the BIMS were in good agreement with those obtained by the CIA for four RC circuits. Second, after measuring BI at each frequency by applying multi-frequency to the left and right forearm and the popliteal region of the body, BI values measured by the BIMS were compared to those acquired by the CIA. Third, when the distance between electrodes was changed to 1, 3, 5, 7, 9, 11, 13, and 15 cm, BI by the BIMS was also compared to BI from the CIA. In addition, BI of extracellular fluid (ECF) was measured at each frequency ranging from 10 to 500 KHz. BI of intracellular fluid (ICF) was calculated by subtracting BI of ECF measured at 500 kHZ from BI measured at seven frequencies ranging from 50 to 500 KHz. BI of ICF and ECF decreased as the frequency increased. BI of ICF sharply decreased at frequencies above 300 KHz.

A Study of the Effect of Degree of Cure on the Physical Properties of Rubber Compounds (가교정도에 따른 고무복합체의 물리적 특성에 관한 연구)

  • Kim, Hyeon-Jae;Kaang, Shin-Young;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.281-289
    • /
    • 1998
  • Tensile properties including Young's modulus and tear strength were measured for four different rubber compounds; natural rubber(NR), styrene-butadiene copolymer(SBR), ethylene-propylene diene monomer (EPDM), and brominated isobutylene-p-methyl-styrene copolymer(BIMS) as a function of temperature and degree of cure. To see the effect of over cure, a measurement was made of the tensile strength and swelling behavior of the over-cured rubber compounds. Young's modulus, E, was found to have linear dependency on the degree of cure for all rubber compounds. EPDM and BIMS showed the highest and lowest slopes, respectively. The slope of NR and SBR lay between EPDM and BIMS. Tear strength, Gc, decreased in the order of NR>BIMS>SBR>EPDM. As the cure time was extended the degree of cure of NR and SBR decreased, while that of BIMS increased. EPDM showed little change in the degree of cure.

  • PDF

Bioelectrical Impedance Analysis at Popliteal Regions of Human Body using BIMS

  • Kim, J.H.;Kim, S.S.;Kim, S.H.;Baik, S.W.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Bioelectrical impedance (BI) at popliteal regions was measured using a bioelectrical impedance measurement system (BIMS), which employs the multi-frequency and the two-electrode method. Experiments were performed as follows. First, a constant AC current of $800{\mu}A$ was applied to the popliteal regions (left and right) and the BI was measured at eight different frequencies from 10 to 500 kHz. When the applied frequency greater than 50 kHz was applied to human's popliteal regions, the BI was decreased significantly. Logarithmic plot of impedance vs. frequency indicated two different mechanisms in the impedance phenomena before and after 50 kHz. Second, the relationship between resistance and reactance was obtained with respect to the applied frequency using BI (resistance and reactance) acquired from the popliteal regions. The phase angle (PA) was found to be strongly dependent on frequency. At 50 kHz, the PA at the right popliteal region was $7.8^{\circ}$ slightly larger than $7.6^{\circ}$ at the left popliteal region. Third, BI values of extracellular fluid (ECF) and intracellular fluid (ICF) were calculated using BIMS. At 10 kHz, the BI values of ECF at the left and right popliteal regions were $1664.14{\Omega}$ and $1614.08{\Omega}$, respectively. The BI values of ECF and ICF decreased sharply in the frequency range of 10 to 50 kHz, and gradually decreased up to 500 kHz. Logarithmic plot of BI vs. frequency shows that the BI of ICF decreased noticeably at high frequency above 300 kHz because of a large decrease in the capacitance of the cell membrane.

Optimal Headways of Urban Bus Services, Reflecting Actual Cycle Time and Demand (운행시간 및 수요 기반 버스 최적배차간격 산정에 관한 연구)

  • Kim, Sujeong;Shin, Yong Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.167-174
    • /
    • 2018
  • This study attempts to construct a model of optimal headway, focusing on a practical applicability to bus transit operation. Examining the existing bus operation and scheduling plans imposed by Busan City, we found that the plans failed to reasonably take into account such realities as varying traffic and operational conditions. The model is thus developed to derive the hourly optimal headway by routes satisfying the real-world conditions: varying hourly demand and cycle time, applying the model to routes 10 and 27 as examples. To do so, we collect big-dataset generated by smart card system and BIMS (Bus Inforamtion Management System). It is expected that the results of this study wil be a basis for further refined research in this field as well as for preparing practical timetables for bus operation.

Effect of Degree of Interfacial Interlinking on Adhesive Strength and Fracture Morphology of Rubber Layers (고무층간 가교정도가 접착강도 및 파괴형태에 미치는 영향)

  • Kim, Hyeon-Jae;Kaang, Shin-Young;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.31-44
    • /
    • 1999
  • Interfacial adhesive strength between the fully-crosslinked and partially-crosslinked rubber layers were Investigated at the temperature range of $30{\sim}120^{\circ}C$ for four different rubbers(NR, SBR, EPDM, BIMS). The surfaces of interfacial failure were also investigated using a scanning electron microscopy(SEM). The physical interlinking played a major role in the adhesive strength between the fully-crosslinked rubber layers. When a partially-crosslinked rubber layer was bonded to the fully-crosslinked one, the chemical as well as the physical interlinking affected the adhesive strength. NR showed a "interfacial knotty tearing" pattern, while EPDM showed a typical "cross-hatched" one when the adhesive strength approached to the cohesive tear strength of each material.

  • PDF

High Performance Barrier Technologies for Tire Innerliner (타이어 인너라이너용 고차단화 기술)

  • Kang, Yong-Gu;Lee, Seong-Peal;Han, Min-Hyun
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.102-111
    • /
    • 2011
  • The innerliner for a tire has excellent impermeability, air retention and good flex properties. The innerliner offers a role to improve performance parameter, such as air retention and tire durability that is of praricular importance for commercial tires. In order to improve the gas barrier properties of a innerliner, most of the innerliner rubbers, such as a halogenated butyl rubber(HIIR), brominated poly(isobutylene-co-isoprene)(BIIR), brominated polyisobutylene-co-paramethylstyrene(BIMS) are used as nanocomposites with nano fillers such as silicates, graphite etc. Innerliners based on nanocomposites may allow gauge adjustments and permeability reductions with potential improvement in tire durability. This article discusses potential innerliner permeablity reduction and compounding parameters on the properties of nanocomposite based innerliners.

A Study on the Review Method of Zero Energy Independence Rate in Building Applied with BIM-based BIPV (BIM기반 BIPV 적용 건축물의 제로에너지 자립률 검토 방법에 관한 연구)

  • Choi, Kyu-Hyeok;Jeon, Hyun-Woo;Park, Kyung-Do
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.277-287
    • /
    • 2022
  • ZEB is a building that increases the energy independence of the building itself, and new and renewable elements that can produce energy are essential, and BIPV is the most notable technology. In ZEB's design, BIPV should be planned early in the design, but BIPV plans are insufficient in the early stages. Therefore, this study derived elements for theoretical consideration of BIM and ZEB and analysis of ZEB independence rate based on BIM, a convergence design technology, and analyzed BIPV energy production and building energy consumption. Finally, by calculating the energy independence rate and reviewing the rating criteria in the project model, a basic research method for calculating the energy independence rate of ZEB at the beginning of the design was presented. Through this, it is expected that design productivity can be improved by supporting the decision of ZEB subjects.

Bioelectrical Impedance Analysis at Inner Forearms of the Human Body using Bioelectrical Impedance Measurement System

  • Kim, Jae-Hyung;Kim, Soo-Hong;Baik, Sung-Wan;Jeon, Gye-Rok
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1146-1153
    • /
    • 2016
  • The bioelectrical impedance (BI) at the inner forearms was measured using bioelectrical impedance measurement system (BIMS), which employs the multi-frequency and the two-electrode method. Experiments were performed as follows. First, while applying a constant alternating current of 800A to the inner region of the forearms, BI (Z) was measured at nineteen frequencies ranging from 5 to 500 kHz. The prediction marker (PM) was calculated for right and left forearm. The resistance (R) and the reactance (Xc) were simultaneously measured during impedance measurement. Second, a Cole-Cole plot (relationship between reactance and resistance) was obtained for left and right forearm, indicating the different characteristic frequencies (fc). Third, the phase angle was obtained, indicating strong dependence on the applied frequency.

AUTOMATIC AS-IS BIM EXTRACTION FOR SUSTAINABLE SIMULATION OF BUILT ENVIRONMENTS

  • Chao Wang;Yong K. Cho
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.47-51
    • /
    • 2013
  • Existing buildings now represent the greatest opportunity to improve building energy efficiency. Building performance analysis is becoming increasingly important because decision makers can have a better visualization of their building's performance and quickly make the solution for improving building energy efficiency and reducing environmental impacts. Nowadays, building information models (BIMs) have been widely created during the design phase of new buildings, and it can be easily imported to third party software to conduct various analyses. However, a BIM is not always available for all existing buildings. Even if a BIM is available during the design and construction phases, it is very challenging to keep updating it while a building is aged. A manual process to create or update a BIM is very time consuming and labor intensive. A laser scanning technology has been a popular tool to create as-is BIM. However it still needs labor-intensive manual processes to create a BIM out of point clouds. This paper introduces automatic as-is simplified BIM creation from point clouds for energy simulations. A framework of decision support system that can assist decision makers on retrofits for existing buildings is introduced as well. A case study on a residential house was tested in this study to validate the proposed framework, and the technical feasibility of the developed system was positively demonstrated.

  • PDF

Comparing the Whole Body Impedance of the Young and the Elderly using BIMS

  • Kim, J.H.;Kim, S.S.;Kim, S.H.;Baik, S.W.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.20-26
    • /
    • 2016
  • The bioelectrical impedance (BI) for the young and the elderly was measured using bioelectrical impedance spectroscopy (BIS). First, while applying a current of $600{\mu}A$ to the foot and hand, BI was measured at 50 frequencies ranging from 5 to 1000 kHz. The BI for young subjects was considerably lower than that for old subjects since young subjects have more lean mass (hydration). The prediction marker was 0.74 for young subjects and 0.78 for old subjects. Second, a Cole-Cole diagram was obtained for young subjects and old subjects, indicating the different characteristic frequencies. At 50 kHz, the average phase angle was $7.8^{\circ}$ for young subjects whereas that was $6.1^{\circ}$ for old subjects. Third, BIVA was analyzed for young subjects and old subjects. The vector length was 210.89 [${\Omega}/m$] for young subjects and 326.12 [${\Omega}/m$] for old subjects. At 50 kHz, the resistance (R/H) and the reactance ($X_C/H$) divided by height were 208.94 [${\Omega}/m$] and 28.68 [${\Omega}/m$] for young subject, and 324.33 [${\Omega}/m$] and 34.09 [${\Omega}/m$] for old subjects.