• Title/Summary/Keyword: BPF%3A Band Pass Filter

Search Result 55, Processing Time 0.028 seconds

Compact 40 GHz Hairpin Band-Pass Filter (초소형 40 GHz Hairpin 대역통과 여파기)

  • Lee, Young Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.27-30
    • /
    • 2018
  • In this study, a 40 GHz band pass filter(BPF) employing a hair-pin structure has been designed, fabricated, and characterized for millimeter-wave wireless communication applications. Using the 3 dimensional(3-D) electromagnetic(EM) tool and design equations of the hairpin BPF, the BPF was desgned on the 5 mil-thick Duroid substrate(RT5880) with a relative dielectric constant (${\varepsilon}_r$) of 2.2. The tapping point (t) of the U-shape resonator in the input and output port has been determined using extracted an external Q-factor ($Q_e$). The coupling coefficients between the other resonators are calculated by adjusting the physical dimensions for the desired response of the BPF. The fabricated BPF was characterized using probing method on a probe station. Its measured center frequency(fc) and fractional BW are 41.6 GHz and 7.43 %, respectively. The measured return loss is below -10 dB at the pass band and the insertion loss is 3.87 dB. The fabricated BPF is as small as $9.1{\times}2.8mm^2$.

Design of Band Pass Filter using the Triple-Mode Resonators (3중모드 공진기를 이용한 대역통과 필터(BPF)의 설계)

  • 황재호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.899-905
    • /
    • 2001
  • This paper presents a triple-mode dielectric resonator far low loss and simple structure filter design. The BPF(Band Pass Filter) was designed using HFSS simulation results an4 fabricated using proposed resonators. The filter (3-stage BPF) has an insertion loss of about 0.9 dB at the center frequency of 1.93 GHz and a 3 dB bandwidth of about 25 MHz. If more complex characteristic is required, slot coupling between resonators can be used. Especially, the proposed BPF can be applied to the next generation mobile communication IMT-2000 system.

  • PDF

A 41dB Gain Control Range 6th-Order Band-Pass Receiver Front-End Using CMOS Switched FTI

  • Han, Seon-Ho;Nguyen, Hoai-Nam;Kim, Ki-Su;Park, Mi-Jeong;Yeo, Ik-Soo;Kim, Cheon-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.675-681
    • /
    • 2016
  • A 41dB gain control range $6^{th}$-order band-pass receiver front-end (RFE) using CMOS switched frequency translated impedance (FTI) is presented in a 40 nm CMOS technology. The RFE consists of a frequency tunable RF band-pass filter (BPF), IQ gm cells, and IQ TIAs. The RF BPF has wide gain control range preserving constant filter Q and pass band flatness due to proposed pre-distortion scheme. Also, the RF filter using CMOS switches in FTI blocks shows low clock leakage to signal nodes, and results in low common mode noise and stable operation. The baseband IQ signals are generated by combining baseband Gm cells which receives 8-phase signal outputs down-converted at last stage of FTIs in the RF BPF. The measured results of the RFE show 36.4 dB gain and 6.3 dB NF at maximum gain mode. The pass-band IIP3 and out-band IIP3@20 MHz offset are -10 dBm and +12.6 dBm at maximum gain mode, and +14 dBm and +20.5 dBm at minimum gain mode, respectively. With a 1.2 V power supply, the current consumption of the overall RFE is 40 mA at 500 MHz carrier frequency.

A Narrow Bandwidth Microstrip Band-Pass Filter with Symmetrical Frequency Characteristics

  • Jun, Dong-Suk;Lee, Hong-Yeol;Kim, Dong-Young;Lee, Sang-Seok;Nam, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.643-646
    • /
    • 2005
  • This letter proposes a band-pass filter (BPF) with two transmission zeros based on a combination of parallel coupling and end coupling of half-wave transmission lines. The fabricated BPF exhibited a narrow bandwidth and two transmission zeros near the pass-band due to the end-coupled and shielding waveguide. At the center operation frequency of 60 GHz, the 20 dB bandwidth of the BPF is 1.0 GHz, which is almost 2% of the center operation frequency, and the insertion loss is 3.12 dB. Two transmission zeros reach approximately 40 dB at 58.5 and 62.5 GHz. The simulation results almost agree with the measured results.

  • PDF

Fabrication and CO2-sensing Characteristics of Optical Band-Pass Filter for 4.3 CO2 Wavelength (4.3 μm 파장 Optical Band-Pass Filter의 제작과 CO2 감도 특성)

  • Lee, Sang-Hoon;Kim, Soo-Hyun;Kim, Kwang-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.210-215
    • /
    • 2002
  • Optical Band-pass Filter(BPF) for the selected wavelength of 4300 nm was designed and fabricated on Si wager by alternately depositing Ge and $SiO_2$ thin layers by an electron beam evaporation technique. The fabricated BPF showed the optical transmittance characteristics of 58.2% with FWHM(Full Width at Half Maximum) of 204 nm at 4300 nm, but showed the transmittance less than 5% due to the reflectance over all the wavelength ranges except 4300 nm band. The $CO_2$ sensitivity of BPF was investigated with the transmittance as a function of $CO_2$ gas concentration using a sensing cell attached to FT-IR instrument. The transmittance of BPF was almost linearly decreased with increasing of $CO_2$ concentration in the range of from 500 to 5000 ppm. The sensing structure using double BPFs showed higher slop of transmittance vs $CO_2$ concentration, and thus higher gas sensitivity than that using a single BPF, even though the former had relatively lower transmittance.

A Design of LTCC Balun-BPF for 2.45GHz Band (2.45GHz 대역 LTCC Balun-BPF의 설계)

  • Jung, Eul-Young;Choi, Kyoung;Hwang, Hee-Yong
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.175-182
    • /
    • 2005
  • This paper presents a LTCC Balun-BPF, which is a BPF(band pass filter) with a Balun in a single LTCC chip for the direct interface with a MMIC chip having balanced inputs. The physical dimension of the designed Balun-BPF is $2.4{\times}2.0{\times}0.88mm^3$ and the used dielectric constant ${\varepsilon}_r$ is 36. A Balun of three-lines structure with striplines and a BPF of comb-line structure was combined into the Balun-BPF. The simulated result shows 4.8㏈ of insertion loss, 178~179 degree of the phase imbalance, 14㏈ of the return.

  • PDF

A Study on Design of Band Pass Filter using Ring Resonators (링 공진기를 사용한 대역통과 필터의 설계에 관한 연구)

  • Kim, Dong-Il;Kim, Bo-Young;Rui, Li
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.533-539
    • /
    • 2004
  • In this work, in order to realize a band pass filter with wide-band characteristics for mobile communications, 2 GHz band pass filter was designed using ring resonator with stub. The three stage wide-band BPF was designed and fabricated. For broadband design, the ring circumference was divided by 4 sections with 1/8 wavelength and 2 sections with 1/4 wavelength which have different line impedances. The characteristics of the proposed BPF were highly improved by using three stage ring resonator. The characteristic impedance values of each sections were obtained by Powell's least square algorithm where differentiations are not needed. The measured results showed a good agreement with the theoretical results as well as ADS simulation.

A study on the design of band pass filter for wireless LAN using Defected Ground Structure (DGS를 이용한 무선랜 대역 통과 여파기의 설계에 관한 연구)

  • 김형석;조영균;송희석;박규호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.182-186
    • /
    • 2004
  • In this paper, 2.4GHz WLAN BPF(Band Pass Filter) which has two DGS(Defected Ground Structure) unit cells was simulated and manufactured. To do this, a unit DGS resonator with resonant frequency is designed. Then the BPF for WLAN with the center frequency of 2.4GHz md the bandwidth of 200MHz is designed using two DGS resonator, finally this circuit is fabricated. We also proposed the equivalent circuit of the BPF employing two DGS resonator. The BPF with DGS was obtained experimental results with network analyzer Agilent 8510C. The measured result shows good agreement with simulated data. Experimental results show the center frequency of 2.45GHz, the insertion loss of 1.08dB, and the 3-dB bandwidth of 470MHz(19.5%). Acceding to the measured values, it is found that the fabricated DGS BPF is available for wireless LAN.

Analysis of inverters for coupling resonators of monoblock dielectric band-pass filter (일체형 유전체 대역 통과 필터의 공진기 결합용 인버터 해석)

  • 강종윤;최지원;심성훈;윤석진;김현재;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.191-194
    • /
    • 1999
  • Recently, with the rapid development and demand for compactness of portable communications, the requirement for compact and low-cost filter is increasing. One of the methods for reducing size and cost is to use high dielectric constant and low loss dielectric material in filter. The other is new monoblock dielectric band-pass filter (BPF) which has holes in a single dielectric body without additional coupling elements. This structure effectively reduces the size and cost of the filters. For previous conventional coaxial type dielectric BPF, dielectric substrates were used for coupling between adjacent resonators and additional input and output ports were needed. Coupling between adjacent resonators of monoblock BPF can be otained via electrode pairs. Capacitances of electrode pair structure for coupling are intensively investigated by 3-D FEM. The BPF for PCS has been designed to have a 30 MHz pass-bandwidth with center frequency of 1855 MHz and an attenuation pole at below the passband using a commercial 3-D structure simulator.

  • PDF

Comparison of Band Pass Filter Performance Using Liquid Crystal Polymer Substrate in Millimeter-Wave Band (밀리미터파 대역에서 액정 폴리머(Liquid Crystal Polymer) 기판을 이용한 대역통과필터 비교)

  • Oh, Yeonjeong;Lee, Jaeyoung;Choi, Sehwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.39-44
    • /
    • 2021
  • In this paper, two types of BPF(Band Pass Filter) which are hair-pin and interdigital have been designed for millimeter-wave application using two types of material which are LCP(Liquid Crystal Polymer) and PTFE(Polytetrafluoroethylene) and also, their performances such as bandwidth, insertion loss, and in-band flatness are compared. The proposed BPF are designed as third-order filters, and their pass band is from 26.5 GHz to 27.3 GHz. Interdigital BPF using PTFE substrate has most wide -3 dB S21 bandwidth of 7.8 GHz and hair-pin BPF using LCP substrate has most narrow -3 dB S21 bandwidth among the proposed four BPF. For in-band insertion loss, hair-pin BPF using PTFE substrate achieves low insertion loss better than -0.667 dB, and hair-pin BPF using LCP substrate exhibits relatively high insertion loss among the proposed four BPF better than -0.937 dB. However, the maximum difference in insertion loss performance among the proposed four BPF is 0.27 dB, which is too small to negligible. For in-band flatness, interdigital BPF using PTFE substrate shows greatest performance of 0.017 dB, and hair-pin BPF using LCP substrate exhibits the lowest performance of 0.07 dB. There are tiny difference in in-band flatness performance of 0.053 dB. As a results, it is considered that the BPF using LCP substrate can derive the performances similar to that of the BPF using PTFE substrate in Millimeter-wave band.