• Title/Summary/Keyword: BSCCO Thin Films

Search Result 56, Processing Time 0.032 seconds

Characteristics of Oxidizing Gas for BSCCO Thin Film Fabrication (BSCCO 박막 제작을 위한 산화가스의 특성)

  • Lim, Jung-Kwan;Park, Yong-Pil;Jang, Kyung-Uk;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.110-113
    • /
    • 2005
  • Ozone is useful oxidizing gas for the fabrication of BSCCO thin films. In order to obtain high quality oxide BSCCO thin films, higher ozone concentration is necessary. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In this paper oxidation property was evaluated relation between oxide gas pressure and inverse temperature(CuO reaction). The obtained condition was formulated by the fabrication of Cu metal thin film by co-deposition using the Ion Beam Sputtering method. Because the CuO phase peak appeared at the XRD evaluation of the CuO thin film using ozone gas, this study has succeeded in the fabrication of the CuO phase at $825^{\circ}C$.

  • PDF

Characteristics of Ambient Gas for Bi-Superconductor Thin Films Growth (Bi 초전도 박막 성장을 위한 분위기가스의 특성)

  • Lim, Jung-Kwan;Park, Yong-Pil;Jang, Kyung-Uk;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.587-588
    • /
    • 2005
  • Ozone is useful oxidizing gas for the fabrication of BSCCO thin films. In order to obtain high quality oxide BSCCO thin films, higher ozone concentration is necessary. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In this paper oxidation property was evaluated relation between oxide gas pressure and inverse temperature(CuO reaction). The obtained condition was formulated by the fabrication of Cu metal thin film by co-deposition using the Ion Beam Sputtering method. Because the CuO phase peak appeared at the XRD evaluation of the CuO thin film using ozone gas, this study has succeeded in the fabrication of the CuO phase at $825^{\circ}C$.

  • PDF

BSCCO Thin Films Fabricated by ion Beam Sputtering Method (IBS법으로 제작한 BSCCO 박막의 상안정 영역)

  • 양승호;양동복;박용필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.538-541
    • /
    • 2003
  • BSCCO superconducting thin films have been fabricated by co-deposition using IBS(Ion Beam Sputtering) method. Despite setting the composition of thin film Bi2212 or Bi2223, in both cases, Bi2201, Bi2212 and Bi2223 phase were appeared. It was confirmed the obtained field of stabilizing phase was represented in the diagonal direction of the right below end in the Arrhenius plot of temperature of the substrate and PO$_3$, and it was distributed in the rezone. The XRD peak of the generated film continuously changed according to the substrate temperature.

  • PDF

Single Crystal Formation of BSCCO Thin Films by Epitaxy Growth (에피택시 성장으로 제작한 BSCCO 박막의 단결정 형성)

  • Cheon, Min-Woo;Yang, Sung-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.671-674
    • /
    • 2004
  • BSCCO thin films have been fabricated by epitaxy growth at an ultra-low growth rate. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 655 and 820 $^{\circ}C$ and the highly condensed ozone gas pressure(PO3) in vacuum chamber was varied between $2.0{\times}10^{-6}$ and $2.3{\times}10^{-5}$ Torr. Bi 2212 phase appeared in the temperature range of 750 and 795 $^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785\;^{\circ}C$. Whereas, $PO_3$ dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$(onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in all of the obtained films.

  • PDF

Fabrication Condition for Single Phase of Bi-superconductor Thin Film

  • Ahn, Joon-Ho;Park, Yong-Pil;Wang, Jong-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.11-14
    • /
    • 2001
  • Phase intergrowth in BSCCO thin films has been Investigated. It turfed out from XRD analyses of these phases that molar fraction of each constituent phase in the intergrowth thin film can be exhibited as a function of substrate temperature and ozone pressure. Super- conducting behavior of the intergrowth thin aim Is also discussed.

  • PDF

Analysis of Bi-Superconducting Thin Films Fabricated by Using the Layer by Layer Deposition and Evaporation Deposition Method

  • Yang, Seung-Ho;Cheon, Min-Woo;Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.517-520
    • /
    • 2007
  • The BSCCO thin film fabricated by using the layer by layer deposition method was compared with the BSCCO thin film fabricated by using the evaporation method. Reevaporation in the form of Bi atoms or $Bi_2O_3$molecules easily bring out the deficiency of Bi atoms in thin film due to the long sputtering time of the layer by layer deposition. On the other hand, the respective atom numbers corresponding to BSCCO phase is concurrently supplied on the film surface in the evaporation deposition process and leads to BSCCO phase formation. Also, it is cofirmed that by optimizing the deposition condition, each single phase of the Bi2201 phase and the Bi2212 phase can be fabricated, the sticking coefficient of Bi element is clearly related to the changing of substrate temperature and the formation of the Bi2212 phase.

  • PDF

Thermodynamics for Formation of Each Stable Single Phase in BSCCO Thin Films

  • Yang, Sung-Ho;Park, Yong-Pil;Kim, Gwi-Yeol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.104-105
    • /
    • 2000
  • High quality BSCCO thin films have been fabricated by means of an ion beam sputtering at various substrate temperatures, T$_{sub}$, and ozone gas pressures, PO$_3$. The correlation diagrams of the BSCCO phases appeared against T$_{sub}$ and PO$_3$are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 phases as well as Bi2212 one come out as stable phases depending on T$_{sub}$ and PO$_3$. From these results, the thermodynamic evaluations of ΔH and ΔS which are related with Gibbs'free energy change for single Bi2212 or Bi2223 phase are performed.ormed.i2212 or Bi2223 phase are performed.

  • PDF

Thermodynamics for Formation of Each Stable Single Phase in BSCCO Thin Films

  • Yang, Sung-Ho;Park, Yong-Pil;Kim, Gwi-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.104-107
    • /
    • 2000
  • High quality BSCCO thin films have been fabricated by means of an ion beam sputtering at various substrate temperatures, T$\_$sub/, and ozone gas pressures, PO$_3$. The correlation diagrams of the BSCCO Phases appeared against T$\_$sub/ and PO$_3$ are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 phases as well as Bi2212 one come out as stable phases depending on T$\_$sub/ and PO$_3$. From these results, the thermodynamic evaluations of ΔH and ΔS which are related with Gibbs' free energy change for single Bi2212 or Bi2223 phase are performed.

  • PDF

Bi2Sr2CaCu2O8+d Thin Films Grown on (100) MgO Substrate by Metallorganic Decomposition Method (MOD 방법을 이용한 Bi2Sr2CaCu2O8+d 박막제작)

  • ;;;;Takayuki Ishibashi;Katsuaki Sato
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1035-1040
    • /
    • 2003
  • High $T_{c}$ superconducting B $i_2$S $r_2$CaC $u_2$ $O_{8+d}$ (BSCCO2212) films were prepared by a metallorganic decomposition (MOD) method. The metal organic solution of BSCCO2212 was spin-coated on MgO (100) substrates at 3000 rpm for 1 min. To achieve a high critical current density, we controlled heat-treatment conditions and atmosphere. The films were annealed at temperature 75$0^{\circ}C$ ∼ 80$0^{\circ}C$ in $O_2$ or air. We obtained c-axis orientated BSCCO thin films on MgO substrates. The annealed sample at 77$0^{\circ}C$ with $O_2$ showed the critical temperature about 77 K and critical current denstity of 1.19 ${\times}$ 10$^{5}$ A/$\textrm{cm}^2$ about 13 K.

Superconducting Characteristics of BSCCO Thin Film Fabricated by Co-deposition (동시 증착으로 제작한 BSCCO 박막의 초전도 특성)

  • Lee, Hee-Kab;Lee, Joon-Ung;Park, Yong-Pil
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.929-931
    • /
    • 1999
  • BSCCO thin films have been fabricated by co-deposition at an ultralow growth rate using ion beam sputtering(IBS) method. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, ozone gas pressure dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$(onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in all of the obtained films.

  • PDF