• Title/Summary/Keyword: BTPS

Search Result 5, Processing Time 0.04 seconds

The Lung Volumes of Korean Females (한국여성의 연령별 정상폐용적 측정)

  • Kim, J.H.;Lee, D.S.;Lee, S.J.;Choi, D.K.
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.77-82
    • /
    • 1967
  • The normal lung volumes were determined and subdivided under sitting position in 48 middle school girls, 49 high school girls and 44 house wives. All subjects were free of pulmonary and vascular diseases. The vital capacity was measured by Mckessons spirometer and the residual volume was determined by Rahn's three breathing method. 1. The lung volumes (BTPS) of middle school girls determined were: $RV\;0.59{\pm}0.11l\;FRC\;1.45{\pm}2.22l\;VC\;2.68{\pm}0.29l$ 2. The lung volumes (BTPS) of high school girls determined were: $RV\;0.83{\pm}0.19l\;FRC\;1.9{\pm}0.25l\;VC\;3.15{\pm}0.24l$ 3. The lung volumes (BTPS) of house wives determind were: $RV\;0.95{\pm}0.61{\ell}\;FRC\;2.1{\pm}0.25{\ell}\;VC\;3.06{\pm}0.29l$ 4. The calculated residual ratio $(RV/TLC{\times}100)$ were: $17.7{\pm}2.57%$ in middle school girls and $20.6{\pm}3.65%$ in high school girls and $24.0{\pm}2.31%$ in house wives 5. The functional residual ratio $(FRC/TLC{\times}100)$ were: $43.7{\pm}5.98%$ in middle school girls and $48.8{\pm}4.41%4 in high school girls and $52.6{\pm}5.38%$ in house wives. 6. The correlation coefficients between vital capacity and total lung capacity were r=0.96 in middle school girls and r=0.986 in high school girls and r=0.856 in house wives. 7. The regression equations were obtained follows: $TLC(l) =1.105{\times}VC+0.304$ (in middle school girls) $TLC(l) =1.551{\times}VC-0.902$ (in high school girls) $TLC(l) =0.999{\times}VC+0.954$ (in house wives)

  • PDF

Studies on the Ventilatory Functions of the Korean Children and Adolescents, with Special References to Prediction Formulas (한국 어린이 및 청소년의 폐환기능에 관한 연구 - 특히 표준치 예측 수식에 관하여 -)

  • Park, Hae-Kun;Kim, Kwang-Jin
    • The Korean Journal of Physiology
    • /
    • v.9 no.2
    • /
    • pp.7-15
    • /
    • 1975
  • The maximum breathing capacity (MBC) and the maximum mid-expiratory flow rate (MMF) are widely used in evaluation of the ventilatory function, among various parameters of pulmonary function. The MBC volume is the amount of gas which can be exchanged per unit time during maximal voluntary hyperventilation. Performance of this test, unlike that of single breath maneuvers, is affected by the integrity of the respiratory bellows as a whole including such factors are respiratory muscle blood supply, fatigue, and progressive trapping of air. Because of this, the MBC and its relation to ventilatory requirement correlates more closely with subjective dyspnea than does any other test. The MMF is the average flow rate during expiration of the middle 50% of the vital capacity. The MMF is a measurement of a fast vital capacity related to the time required for the maneuver and the MMF relates much better to other dynamic tests of ventilatory function and to dyspnea than total vital capacity, because the MMF reflects the effective volume, or gas per unit of time. Therefore, it is important to have a prediction formula with one can compute the normal value for the subject and the compare with the measured value. However, the formulas for prediction of both MBC and MMF of the Korean children and adolescents are not yet available in the present. Hence, present investigation was attempt to derive the formulas for prediction of both MBC and MMF of the Korean children and adolescents. MBC and MMF were measured in 1,037 healthy Korean children and adolescents (1,035 male and 1,002 female) whose ages ranged from 8 to 18 years. A spirometer (9L, Collins) was used for the measurement of MBC and MMF. Both MBC and MMF were measured 3times in a standing position and the highest values were used. For measurement, the $CO_2$ absorber and sadd valve were removed from the spirometer in order to reduce the resistance in the breathing circuit and the subject was asked to breathe as fast and deeply as possible for 12 seconds in MBC and to exhale completely as fast as possible after maximum inspiration for MMF. During the measurement, investigator stood by the subject to give a constant encouragement. All the measured values were subsequently converted to values at BTPS. The formulas for MBC and MMF were derived by a manner similar to those for Baldwin et al (1949) and Im (1965) as function of age and BSA or age and height. The prediction formulas for MBC (L/min, BTPS) and MMF (L/min, BTPS) of the Korean children and adolescents as derived in this investigation are as follows: For male, MBC=[41.70+{$2.69{\times}Age(years)$}]${\times}BSA$ $(m^{2})$ MBC=[0.083+{$0.045{\times}Age(years)$}]${\times}Ht$ (cm) For female, MBC=[45.53+{$1.55{\times}Age(years)$}]${\times}BSA$ $(m^2)$ MBC=[0.189+{$0.029{\times}Age(years)$}]${\times}Ht$ (cm) For male, MMF= [0.544+{$0.066{\times}Age(years)$}]${\times}Ht$ (cm) For female, MMF=[0.416+{$0.064{\times}Age(years)$}]${\times}Ht$ (cm)

  • PDF

A Study on the Physique and Bodily Strength of the Enlisted Men of Marine Corps in Korea (일부 사형의 체격 및 체력에 관한 연구)

  • Shin, Young-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.6 no.1
    • /
    • pp.87-99
    • /
    • 1973
  • The purpose of this project is offering fundamental and proper informations for the better health control and personnel management of the enlisted men of Marine corps in Korea. Survey has been done under 1,001 marine enlisted men for the purpose of understanding their condition of physique, vital capacity, and bodily strength. 1. Under the subject of physique, 7 items, body weight, chest-girth, relative body weight, relative chest-girth, Vervaeck index, and Roehrer index are listed, and under the subject of vital capacity, BTPS vital capacity and percent predicted vital capacity are listed, and under the subject of bodily strength, 7 items, grasping power, chinning-up, throwing a hanp-grenade, forward jumping, sitting-up, 100 meter sprinting, are listed. The total items are 16 and mean score of each one is as follow. 1)Physique : a. Height : $$168{\pm}0.15cm$$ b. Body weight : $$62.7{\pm}0.17kg$$ c. Chest-girth : $$91.4{\pm}0.16cm$$ d. Relative body weight : $$37.2{\pm}0.09$$ e. Relative chest-girth : $$54.3{\pm}0.10$$ f. Vervaeck index : $$91.6{\pm}0.15$$ g. Roehrer index : $$1.31{\pm}0.003$$ 2) Vital capacity : a. BTPS vital capacity : $$4470{\pm}20cc$$ b. % Predicted vital capacity : $$150{\pm}5.1%$$ 3) Bodily strength : a. Grasping power : $$41.4{\pm}0.26kg$$ b. Chinning-up : $$5.7{\pm}0.10$$ c. Throwing a hand-grenade : $$39.7{\pm}0.20m$$ d. Forward jumping : $$214{\pm}0.58cm$$ e. Sitting-up : $$19.1{\pm}0.25$$ f. Pushing-up : $$22.1{\pm}0.18$$ g. 100 meter sprinting : $$16.1{\pm}0.04sec$$. 2. Comparative analysis has been done about the conditional classes of marine enlisted men with the results of above mentioned 16 items. 7 classes according to the branches, 3 according to the ranks, 9 according to tile length of service are adopted respectively.

  • PDF

CURRENT RESEARCH ON ACCELERATOR-BASED BORON NEUTRON CAPTURE THERAPY IN KOREA

  • Kim, Jong-Kyung;Kim, Kyung-O
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.531-544
    • /
    • 2009
  • This paper is intended to provide key issues and current research outcomes on accelerator-based Boron Neutron Capture Therapy (BNCT). Accelerator-based neutron sources are efficient to provide epithermal neutron beams for BNCT; hence, much research, worldwide, has focused on the development of components crucial for its realization: neutron-producing targets and cooling equipment, beam-shaping assemblies, and treatment planning systems. Proton beams of 2.5 MeV incident on lithium target results in high yield of neutrons at relatively low energies. Cooling equipment based on submerged jet impingement and micro-channels provide for viable heat removal options. Insofar as beam-shaping assemblies are concerned, moderators containing fluorine or magnesium have the best performance in terms of neutron accumulation in the epithermal energy range during the slowing-down from the high energies. NCT_Plan and SERA systems, which are popular dose distribution analysis tools for BNCT, contain all the required features (i.e., image reconstruction, dose calculations, etc.). However, detailed studies of these systems remain to be done for accurate dose evaluation. Advanced research centered on accelerator-based BNCT is active in Korea as evidenced by the latest research at Hanyang University. There, a new target system and a beam-shaping assembly have been constructed. The performance of these components has been evaluated through comparisons of experimental measurements with simulations. In addition, a new patient-specific treatment planning system, BTPS, has been developed to calculate the deposited dose and radiation flux in human tissue. It is based on MCNPX, and it facilitates BNCT efficient planning based via a user-friendly Graphical User Interface (GUI).