• Title/Summary/Keyword: BaTiO%24_3%24 ceramics

Search Result 14, Processing Time 0.033 seconds

PTCR Effects In Nb2O5 Doped BaTiO3 Ceramics Prepared By Molten Salt Synthesis Method (용융염합성법에 의한 Nb2O5 첨가 BaTiO3의 PTCR 효과)

  • 윤기현;정해원;윤상옥
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.6
    • /
    • pp.579-585
    • /
    • 1987
  • The effects of flux KCl and dopant Nb2O5 on the PTCR characteristics of BaTiO3 prepared by molten salt synthesis method have been investigated. As the amount of dopant Nb2O5 is over the solubility limit in BaTiO3, the room-temperature resistivity increases, and the PTCR effect and the grain size decrease. The variation of the amount of flux KCl slightly influences on the room-temperature resistivity, PTCR effect and grain size in Nb2O5 doped BaTiO3, but BaTiO3 ceramics prepared by the method of molten salt synthesis show larger PTCR effect than those of conventional calcining of mixed oxides.

  • PDF

Glycothermal synthesis and characterization of $BaTiO_3$ glycolate (Glycothermal법에 의해 제조된 $BaTiO_3$ glycolate의 특성)

  • Kil, Hyun-Sig;Amar, Badrakh;Lim, Dae-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.286-287
    • /
    • 2006
  • Barium titanate ($BaTiO_3$) glycolate particles were synthesized at temperature as low as $100^{\circ}C$ through glycothermal reaction by using $Ba(OH)_2{\cdot}8H_2O$ and amorphous titanium hydrous gel as precursors and ethylene glycol as solvent. The particle size and morphology of $BaTiO_3$ glycolate powders can be controlled by varying the reaction conditions such as the reaction temperature and Ba:Ti molar ratio of starting precursors. After glycothermal treatment at $220^{\circ}C$ for 24 h in 1.25:1(Ba:Ti), the average particle size of the $BaTiO_3$ glycolate powder was about 200-400 nm and low agglomeration. $BaTiO_3$ powders were formed by heat-treating the glycolate powder in air at $500-1000^{\circ}C$. As a result, the size of $BaTiO_3$ crystallites changed from around 50-300 nm. It is also demonstrated that the size and shape of $BaTiO_3$ particles investigated as a function of calcination temperature. The $BaTiO_3$ particles obtained from optimum synthesis condition were pressed, sintered and measured for the dielectric property. The $BaTiO_3$ ceramics sintered at $1250^{\circ}C$ for 2 h had 98 % of theoretical density. The ceramics have an average grain size of about $1\;{\mu}m$ and displays the high dielectric constant (~3100) and low dielectric loss (<0.1) at room temperature.

  • PDF

Effect of the Calcination Conditions for the Synthesized $BaTiO_3$ Powder and the Sintered PTC Ceramics by Oxalic Acid Method (Oxalic Acid법으로 합성한 $BaTiO_3$ 분말과 소결한 PTC 세라믹스에 대한 하소조건의 효과)

  • 이미재;황선아;최병현
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1378-1386
    • /
    • 1994
  • The characteristic of calcined BaTiO3 powder and sintered PTC ceramics was investigated varing with calcination temperature and time of BaTiO(C2O4)2.4H2O synthesized from BaCl2.2H2O, TiCl4, oxalic acid and ethanol by oxalic acid method. When the particle size was less than 0.1 ${\mu}{\textrm}{m}$ by controlling calcination temperature and time, the resistance at room temperature was measured very high (above M{{{{ OMEGA }}). However, when the calcined particle sizes ranged from 0.2 to 0.3 ${\mu}{\textrm}{m}$, the resistance was 100 {{{{ OMEGA }} (After sintering, the grain size was 10~30 ${\mu}{\textrm}{m}$ homogeneously with the addition of dopant in sintering, the resistivity, resistance, $\alpha$ value and jumped to were 110{{{{ OMEGA }}.cm, 24$^{\circ}C$/% and 106{{{{ OMEGA }}, respectively.

  • PDF

Electrical properties and degradation behavior of Tm2O3 doped barium titanate ceramics for MLCCs (Tm2O3가 첨가된 MLCC용 BaTiO3 유전체의 전기적 특성 및 열화거동)

  • Kim, Do-Wan;Kim, Jin-Seong;Hui, K.N.;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.278-282
    • /
    • 2010
  • The doping effect of thulium on electrical properties and degradation behavior in barium titanate ceramics ($BaTiO_3$) was investigated in terms of generations of core-shell structure and micro-chemical changes through highly accelerated degradation test. The dielectric specimens of pellet type and multi-layered sheets were prepared by using $BaTiO_3$ with undoped and doped with 1 mol% $Tm_2O_3$. The $BaTiO_3$ ceramics doped with 1 mol% $Tm_2O_3$ had 40% higher dielectric constant (${\varepsilon}$ = 2700) than that of the undoped $BaTiO_3$ specimen at curie temperature and met X7R specification. According to the result of highly accelerated degradation test conducted at $150^{\circ}C$, 70 V, and 24 hr, the oxygen diffusion was declined in dielectrics doped with 1 mol% $Tm_2O_3$. The $Tm^{3+}$ ion substituted selectively Ba site and Ti site and contributed to the generation of the core-shell structure. Oxygen vacancies occurred by substitution for Ti site could reduce excess oxygen that reacted to the Ni electrode.

Piezoelectric Properties of NKN-BZT Ceramics Sintered with CuO and ZnO Additives (CuO와 ZnO 첨가에 따른 NKN-BZT 세라믹스의 압전 특성)

  • Lee, Seung-Hwan;Baek, Sang-Don;Lee, Dong-Hyun;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.636-640
    • /
    • 2011
  • The lead-free $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Ba(Zr_{0.52},Ti_{0.48})O_3$-(hereafter NKN-BZT) CuO, ZnO-doped ceramics were prepared using a conventional mixed oxide method. NKN-BZT ceramics doped CuO, ZnO have superior structural and electrical properties than pure NKN-BZT ceramics. For the NKN-BZT-ZnO ceramics sintered at $1,120^{\circ}C$, piezoelectric constant ($d_{33}$) of sample showed the optimum values of 172 pC/N. The $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Ba(Zr_{0.52},Ti_{0.48})O_3$-ZnO ceramics are a promising candidate for lead-free piezoelectric materials.

A Study on the Piezoelectric Properties of the Pb($Zn_{1/3}Nb_{2/3})O_3-Ba(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$ (Pb($Zn_{1/3}Nb_{2/3})O_3-Ba(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$ 세라믹의 압전특성에 관한 연구)

  • 박혜옥;박인길;이성갑;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.70-73
    • /
    • 1989
  • (1-x-y)Pb($Zn_{1/3}Nb_{2/3})O_3-Ba(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3(0.12{\leq}x{\leq}0.21, 0.24{\leq}y{\leq}0.33$) ternary compound ceramics were fabricated by the mixed oxide method. The sintering temperature and time were 1050 [$^{\circ}C$], 2[hr]. Morphotropic phase boundary region was chosen for the composition. 0.55 PZN-0.21 BZN-0.24 PT specimen had the highest value of relative dielectric constants, 5353. The curie temperature of specimens were increased linearly with PT content. Near the morphotropic phase boundary, electro-mechanical coupoling factor and mechanical quality factor of the specimens had the highest values.

  • PDF

Enhancement of PTCR Characteristics of MnO2 Doped Lead Free BaTiO3-(Bi0.5Na0.5)TiO3 Ceramics with High Tc (>165℃) (MnO2가 도핑된 무연 High Tc (>165℃) BaTiO3-(Bi0.5Na0.5)TiO3 세라믹의 PTCR 특성 향상)

  • Kim, Kyoung-Bum;Jang, Young-Ho;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.723-727
    • /
    • 2011
  • 0.935Ba$TiO_3$-0.065($Bi_{0.5}Na_{0.5}$)$TiO_3+xmol%MnO_2$ (BBNTM-x) ceramics with $0{\leq}x{\leq}0.05$ were fabricated with muffled sintering by a modified synthesis process. Their microstructure and enhanced positive temperature coefficient of resistivity (PTCR) characteristics were systematically investigated in order to obtain lead-free high TC PTCR thermistors. All specimens showed a perovskite structure with a tetragonal symmetry and no secondary phase was observed. Grain growth was achieved when the doped MnO2 was increased above 0.02 mol%. This is due to the effect of positive Mn ion doping as an acceptor compensating a Ba vacancy occurred by the higher donor dopant concentration of $Bi^{3+}$ ion. Especially, enhanced PTCR characteristics of the extremely low ${\rho}_{RT}$ of $9\;{\Omega}{\cdot}cm$, PTCR jump of $5.1{\times}10^3$, ${\alpha}$ of 15.5%/$^{\circ}C$ and high $T_C$ of $167^{\circ}C$ were achieved for the BBNTM-0.04 ceramics.

Effect of MoO3 Addition and Their Frequency Characteristics in Nb+5 doped Semiconductive BaTiO3 Ceramics (Nb+5첨가된 반도성 BaTiO3세라믹스에서 MoO3의 영향과 주파수 특성)

  • 윤상옥;정형진;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 1987
  • Effect of MoO3 additiion on the semiconductive BaTiO3 ceramics doped with 0.2 mole% Nb2O5 and their frequency characteristics have been investigated on the view of intergranular barrier layer model through the observation of changes in their electrical properties. The resistivity increases with the increase of MoO3 addition, but the capacitance, the frequency dependence of capacitance and the effect of positive temperature coefficient of resistivity (PTCR) decrease. It is explained by the possible increase in the thickness of potential barrier due to the formation of insulating layer and thus decrease in the degree of energy band bending. Both the PTCR effect and resistivity decrease with the increase of frequency due to the possible elimination of barrier layer at the grain boundary.

  • PDF

Effects of A-Site Sr and B-Site Substitution on the Dielectric Properties of BaTiO3 Ceramics (A-site Sr 및 B-site Ca 첨가 BaTiO$_3$ 세라믹스의 유전특성)

  • 박재관;오태성;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.689-695
    • /
    • 1991
  • Dielectric properties of Ba1-$\chi$Sr$\chi$Ti1-yCayO3-y ceramics, where Sr and Ca were doped to Ba-site and Ti-site within the range of 0 x 0.24 and 0 y 0.05, respectively, were investigated. The substitution of Ca for Ti, which maintained the high resistivity of these formulations after sintering in a reducing atmosphere, was confirmed. Ca addition decreased the tetragonality c/a, increased the unit cell volume, and lowered Curie temperature, which were attributed to the occupancy of Ca2+ ions on Ti-sites. The lowering of Curie temperature by Ca addition was affected by the substitution of Sr for Ba-site; within 2 mol% of Ca, Curie temperature was lowered at a rate of 2$0^{\circ}C$ and 16$^{\circ}C$ per mol% of Ca at x=0 and x=0.08, respectively. Whereas the resistivity of the formulations without Ca was reduced to 107 {{{{ OMEGA }}cm, when sintered at low oxygen partial pressure of 10-9 MPa, the resistivity value higher than 1011 {{{{ OMEGA }}cm was maintained for the formulations containing Ca more than 0.5 mol%. Dielectric loss factor, tan$\delta$, was about 1% for most formulations.

  • PDF

Positive Temperature Coefficient of Resistivity(PTCR) Behavior of Nb2O5 Added Ba0.99(Bi0.5Na0.5)0.01TiO3 Ceramics as a Function of Sintering Time (Nb2O5 첨가와 소결시간에 따른 Ba0.99(Bi0.5Na0.5)0.01TiO3 세라믹스의 PTCR 특성)

  • Oh, Young-Kwang;Choi, Seung-Hun;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.559-562
    • /
    • 2011
  • In this study, the effect of $Nb_2O_5$ and sintering time on the positive temperature of coefficient of resistivity (PTCR) behavior of lead free $Ba_{0.99}(Bi_{0.5}Na_{0.5})_{0.01}TiO_3$ (BBNT) ceramics were investigated in order to fabricate a PTC thermistor with high $T_c$ temperature more than $140^{\circ}C$. In particular, BBNT ceramic doped with 0.1mol% $Nb_2O_5$ and sintered at $1350^{\circ}C$ for 4 h has significantly increased Curie temperature ($T_c$) of about $200^{\circ}C$, showed good PTCR behavior of room-temperature resistivity ($\rho_{rt}$) of $40{\Omega}{\cdot}cm$, a high $\rho_{max}/\rho_{min}$ ratio of $43.78{\times}10^3$ and a large resistivity temperature factor (${\alpha}$) of 16.1%/$^{\circ}C$. With increasing addition of $Nb_2O_5$ content, the $\rho_{rt}$ decreased to a minimum value of $40\;{\Omega}cm$ at 0.1mol% $Nb_2O_5$ and the $\rho_{rt}$ increased for x value over 0.1 mol%.