• Title/Summary/Keyword: Bacillus licheniformis 0DA23-1

Search Result 3, Processing Time 0.021 seconds

Complete genome sequence of Bacillus licheniformis strain 0DA23-1, a potential starter culture candidate for soybean fermentation (콩발효 종균후보 Bacillus licheniformis 0DA23-1의 유전체 염기서열)

  • Jeong, Do-Won;Lee, Byunghoon;Heo, Sojeong;Jang, Mihyun;Lee, Jong-Hoon
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.453-455
    • /
    • 2018
  • Bacillus licheniformis strain 0DA23-1, a potential fermentation starter candidate, was isolated from doenjang, a Korean high-salt-fermented soybean food. Strain 0DA23-1 contains a single circular 4,405,373-bp chromosome with a G + C content of 45.96%. The complete genome of strain 0DA23-1 does not include any of the virulence factors found in the well-known pathogens Bacillus cereus and Staphylococcus aureus. Additionally, no genes associated with resistance to eight antibiotics (chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline, and vancomycin), hemolysis, or biofilm formation were identified.

Isolation and Characterization of Bacillus licheniformis SC082 Degrading Fibrin and Chitin from Shrimp Jeot-Gal (새우젓으로부터 혈전과 chitin 분해능을 지닌 균주 Bacillus licheniformis SC082의 분리 및 특성)

  • Cho, Eun-Kyung;Jung, Yu-Jung;Gal, Sang-Wan;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1424-1431
    • /
    • 2009
  • Shrimp Jeot-Gal is a popular traditional Korean fermented seafood and has been used for seasoning. We isolated a bacterium showing strong extra-cellular fibrinolysis and chitinase activity from shrimp Jeot-Gal and the strain was designated SC082. SC082 was identified as Bacillus licheniformis by 16S rRNA sequence homology search. B. licheniformis SC082 exhibited optimum temperature, pH, and salt concentration at $37^{\circ}C$, pH 7.0, and 6%, respectively. Substrate specificity of the culture supernatant from B. licheniformis SC082 was detected in fibrin, skim milk, and chitin plate. The fibrinolytic activity was highly maintained up to $50^{\circ}C$ at a pH of 7.0 for 3 hr and was stable up to pH 9.0 at $37^{\circ}C$ for 3 hr. The chitinase activity was remarkably induced by addition of 1.0% colloidal chitin and the pH and temperature optima of the enzyme were 5.0 and $45^{\circ}C$, respectively. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram analysis, this strain produced three fibrinolytic isozymes and two chitinase isozymes. The approximate molecular weights of the putative fibrinolytic enzymes were 23.0, 62.0, and 72.0 kDa and those of the chitinases were 62.0 and 55.0 kDa, respectively. The antioxidant activity of SC082 was also measured by using 2,2-diphenyl-l-picryl-hydrazyl (DPPH) free radical. The DPPH radical scavenging was slightly increased in a dose-dependent manner.

Increased Production of γ-Aminobutyric Acid from Brewer's Spent Grain through Bacillus Fermentation

  • Tao Kim;Sojeong Heo;Hong-Eun Na;Gawon Lee;Jong-Hoon Lee;Ji-Yeon Kim;Do-Won Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.527-532
    • /
    • 2023
  • Brewer's spent grain (BSG) is a waste product of the beer industry, and γ-aminobutyric acid (GABA) is a physiologically active substance important for brain and neuron physiology. In this study, we used the bacterial strains Bacillus velezensis DMB06 and B. licheniformis 0DA23-1, respectively, to ferment BSG and produce GABA. The GABA biosynthesis pathways were identified through genomic analysis of the genomes of both strains. We then inoculated the strains into BSG to determine changes in pH, acidity, reducing sugar content, amino-type nitrogen content, and GABA production, which was approximately doubled in BSG inoculated with Bacillus compared to that in uninoculated BSG; however, no significant difference was observed in GABA production between the two bacterial strains. These results provide the experimental basis for expanding the use of BSG by demonstrating the potential gain in increasing GABA production from a waste resource.