• Title/Summary/Keyword: Bacillus megaterium

Search Result 116, Processing Time 0.025 seconds

Study on the Bioflocculant by Bacillus megaterium. #2 Characteristic of Production Condition for Bioflocculant by Bacillus megaterium (Bacillus megaterium 이 생산하는 응집제에 관하여 제 2보 Bacillus megaterium에 의한 응집제 생산특성)

  • 김도영
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.3
    • /
    • pp.240-245
    • /
    • 1999
  • The purpose of this study was to develop the new microbial bioflocculant available in a food and fer-mentation industal. This study was reported the results of the composition for optimum culture medium and elemental characteristic of crude purification bioflocculant following the previous report(I). The maximum production of the flocculant from Bacillus megaterium was observated in the culture medium containing 2% sucrose 0.3% NaNO3 0.01% tryptone 0.01% beef extract 0.05% MgSO4 ·7 H2O 0.005% CaCO3 Addition of the sucrose as carbon sources and inorganic salt such as MgSO4, CaCO3 significantly increased the production of flocculant more than nitrogen sources. In the result of color reaction of the crude purified bioflocculant it was investgated that anthrone was positive and benedict burette and nin-hydrin was negative. These result were indicated that the flocculant produced from Bacillus megaterium was a kind of exopolysaccharide.

  • PDF

Production of a Keratinolytic Protease by a Feather-Degrading Bacterium, Bacillus megaterium F7-1 (우모분해세균 Bacillus megaterium F7-1에 의한 Keratinolytic Protease의 생산)

  • 손홍주;박근태;김용균
    • Korean Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.43-48
    • /
    • 2004
  • Bacillus megaterium F7-1 producing keratinolytic protease was isolated from decayed chicken feather. The optimal culture conditions for the production of keratinolytic protease by B. megaterium F7-1 were investigated. The composition of optimal medium for the keratinolytic protease was 0.2% glucose, 0.8% skim milk, 0.05% NaCl, 0.01 % $(K_2HPO_4$, 0.02%, $(KH_2PO_4$ and 0.01 % $MgCl_2$. Especially, skim milk was found to be the most effective compound in keratinolytic protease production. The optimal temperature and initial pH were 6.5 and $25^{\circ}C$, respectively. The keratinolytic protease production under optimal condition reached a maximum of 269 U/ml after 5 days of cultivation. B. megaterium F7-1 degraded 98% of the feather used in the optimized medium within 6 days.

Expression of a $\beta$-1,3-Glucanase Gene from Bacillus circulans in B. subtilis and B. megaterium (Bacillus subtilis와 Bacillus megaterium에서의 $\beta$-1,3-glucanase 유전자의 발현)

  • 김기훈;김지연;김한복;이동석
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.253-258
    • /
    • 2001
  • A Bacillus circulans KCTC3004 $\beta$-1,3-glucanase gene contained in a recombinant plasmid pLM460 derived from subcloning the original recombinant plasmid pLM530 was trasferred into a new shuttle vector plasmid pLMS1180 by ligating linearized DNAs of pLM460 and pUB110. B. subtilis RM125 and B. megaterium ATCC14945 transformed with pLMS1180 produced the $\beta$-1,3-glucanase substantially. Most of the enzyme was produced during the exponential growth period. The maxium activities of the $\beta$-1,3-glucanase produced by the Bacillus transformants were compared with that of the B. circulans gene donor strain. The B. subtilis RM125 (pLM1180) enzyme showed the activity 14 times higher than that of the gene donor cells, followed by the B. megaterium ATCC14945 (pLMS 1180) enzyme with activity 5 times higher than that of the gene donor cells. While E. coli secreted about 7% of the produced enzyme, B. subtilis excreted the enzyme into the medium wholly and B. megaterium about 97% of the total product. The SDS-PAGE of this enzyme produced in E. coli (pLMS1180), B subtilis (pLMS1180) or B. megaterium (pLMS1180) indicated a molecular weight of 38,000. The enzymes overproduced in three different host cells hydrolyzed laminarin to produce mainly laminaribiose, laminaritriose, and laminarioligosaccharides. The plasmid pLMS1180 was stable in B. megaterium, E. coli, but was unstable in B. subtilis.

  • PDF

Production of Vitamin $B_{12}$ by Using Protoplast Fusion between Bacillus natto and Bacillus megaterium (Bacillus natto 및 Bacillus megaterium의 원형질체 융합에 의한 Vitamin $B_{12}$의 생산)

  • Jin, Sung-Hyun;Park, Bub-Gyu;Roh, Myung-Hoon;Kim, Dong-Gyu;Ryu, Beung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.611-617
    • /
    • 1990
  • This study was conducted to breed a high vitamin $B_{12}$ producer by the fusion of protoplasts between Bacillus natto and Bacillus megaterium. Auxotrophic mutants of Bacillus natto SH-34 ($thr^-try^-rif^r$) and Bacillus megaterium BK-13 ($arg^-ade^-lys^-str^r$) which showed high protease activity and production of vitamin $B_{12}$, respectively, were isolated for the fusion experiment. Protoplasts were induced by incubating the cells with lysis solution containing $500{\mu}/ml$ lysozyme, and the ratio of protoplast and regeneration formation were ranged from 99% and 67%, respectively. Fusion frequencies of fusants between Bacillus natto SH-34 and Bacillus megaterium BK-13 were appeared in the ranges of $1.0{\times}10^{-5}$ under the treatment of 30% PEG 6000 containing 3% PVP. The fusant, MNF-72 showed the highest product yield of $7.85{\mu}g/g-cell\;vitamin\;B_{12}$ in production medium. For the improvement of productivity, the immobilization of fusants with sodium alginate was carried out. In batch and continuous fermentation systems, the productivity were determined to be $0.58{\mu}g/ml.hr\;and\;0.80{\mu}g/ml.hr\;vitamin\;B_{12}$ under optimum condition, respectivity.

  • PDF

Study on the Biloflocculant by Bacillus meagaterium (Bacillus megaterium이 생산하는 응집제어에 관하여)

  • 김교창;정준영
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.622-628
    • /
    • 1998
  • Microorganisms isolated from soil were tested for their flocculating activity in kaolin suspension, Identification of the best producing CH-23 strain showed that the strain belonged to the Bacillus megaterium. The maximum production of the flocculating from Bacillus megaterium CH-23 was observed in the culture medium containing 2% sucrose, 3% NaNo3, 0.1% K2HPO4, 0.5% NaCl, 0.5% MgSO4.7H2O and 0.01% tryptone at initial pH 7.0 and 25~3$0^{\circ}C$. Flocculating activity was improved to 57% when the culture medium contained Mn2+(0.01% MnSo4). In the culture medium containing Mg2+(0.01% MgSO4.7H2O) and Ca2+(0.01% CaCO3), flocculating activity were reached to 48% and 33%, respectively.

  • PDF

Study on the Production and the Culture Condition of Cholesterol Oxidase from Bacillus megterium SFO41 (Bacillus megaterium SFO41에 의한 Cholesterol Oxidase의 생산 및 최적 배양 조건)

  • 김관필;이창호;우철주;박희동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.3
    • /
    • pp.403-409
    • /
    • 2001
  • A novel strain of SFO41 producing a large amount of cholesterol oxidase as an extracellular enzyme isolate from Korean salt fermented foods. The strain was identified as Bacillus megaterium based on morphological, cultural and physiological characteristics. Experiments were carried out to optimized the condition of cholesterol oxidase production using B. megaterium SFO41. B. megaterium SFO41 was shown to give the maximum yield of cholesterol oxidase in the medium containing 2.0% glucose, 0.5% yeast extract. 0.03% $MgSO_4{\cdot}7H_2O,\;0.02%\;K_2HPO_4,\;0.2%\;NH_4NO_3$ and 0.2% cholesterol. The optimum culture conditions, temperature, initial pH and agitation speed were $30^{\circ}C$, 7.0 and 150 rpm, respectively. The enzyme production reached a maximum level at 24 hr of cultivation (2.37 U).

  • PDF

Some Cultural Characteristics of Bacillus megaterium YWO-5 Producing Bioflocculant for Wastewater Treatment (폐수처리용 생물응집제를 생산하는 Bacillus megaterium YWO-5의 배양특성)

  • Seo, Ho-Chan;Yeo, Sung-Jee;Cho, Hong-Yeon;Yang, Han-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.80-85
    • /
    • 1999
  • To develop bioflocculant for wastewater treatment, about 60 type culture strains and 450 strains isolated from natural sources were examined for screening their ability to flocculate the swine wastewater. Among them, YWO-5 showed the highest activity for NTU removal efficiency and was identified as Bacillus megaterium according to the cultural, morphological and physiological properties. The maximum production of the flocculant was achieved in culture medium containing 2% glucose, 0.05% soytone, 0.01% $CaCl_2$, 0.05% $KH_2PO_4$, and 0.05% yeast extract with initial pH 6.5 when cultured with rotary shaker controlled at 20$^{\circ}C$ and 150 rpm. With jar fermentor, the maximum production was reached to NTU removal efficiency of 93% after 3 days under the optimal conditions. The bioflocculant produced by Bacillus megaterium YWO-5 was effective on various suspended solids and organic wastewaters.

  • PDF

Cultural Conditions for Pretense Production by a feather-Degrading Bacterium, Bacillus megaterium F7-1 (우모분해세균 Bacillus megaterium F7-1에 의한 단백질 분해효소 생산에 영향을 미치는 배양조건)

  • Son Hong-Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.315-318
    • /
    • 2005
  • The effects of inorganic salts and feather concentrations on pretense production by Bacillus megaterium F7-1 were investigated. Pretense production was dependent on the presence of phosphates in the medium. Supplementation of medium with calcium ion slightly increased protease production. The highest protease production was obtained at $1.4\%$ feather. The optimal medium contained $2.0\%$ glucose, $0.8\%$ skim milk, $0.06\%\;K_{2}HPO_{4}\%,\;0.04\%\;KH_{2}PO{4},\;0.06\%\;NaCl,\;0.03\%\;MgCl_{2}\cdot6H_{2}O,\;0.002\%\;CaCl_{2}\cdot2H_{2}O,\;and\;1.4\%$ whole feather. By using this optimized medium, increased production of the protease was achieved compared with the cases of using basal medium.

Escherichia coli GroEL was Induced by the Expression of the Cloned Bacillus megaterium ATCC14945 Pencillin G Acylase Gene (클론된 Bacillus megaterium ATCC14945의 페니실린 지 아실라제의 발현에 따른 대장균에서의 GroEL의 유도 생산)

  • Hyun, Kang Joo;Kim, Sung Sun;Yoo, Ook Joon
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.421-424
    • /
    • 1992
  • Escherichia coli JM83 harboring penicilin G acylase gene of Bacillus megaterium ATCC14945 produced a protein in large amount (>20% of the total protein). The protein was identified as GroEL, one of the E. coli heat shock protein, by N-terminal amino acid sequence analysis. It was found that GroEL was induced by the expressed foreign penicilin G acylase at both 27 and $37^{\circ}C$.

  • PDF

Purification and Characteriztion of an Antifungal Antibiotic from Bacillus megaterium KL 39, a Biocontrol Agent of Red-Papper Phytophtora Blight Disease. (고추역병균 Phytophthora capsici를 방제하는 길항균주 Bacillus megaterium KL39의 선발과 길항물질)

  • 정희경;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.235-241
    • /
    • 2003
  • For the biological control of Phytophthora blight of red-pepper caused by Phytophthora capsici, an antibiotic-producing plant growth promoting rhizobacteria (PGPR) Bacillus sp. KL 39 was selected from a local soil of Kyongbuk, Korea. The strain KL 39 was identified as Bacillus megaterium by various cultural, biochemical test and API and Microlog system. B. megaterium KL 39 could produce the highest antifungal antibiotic after 40 h of incubation under the optimal medium which was 0.4% fructose, 0.3% yeast extract, and 5 mM KCl at 30 C with initial pH 8.0. The antifungal antibiotic KL 39 was purified by Diaion HP-20 column, silica gel column, Sephadex LH-20 column, and HPLC. Its RF value was confirmed 0.32 by thin-layer chromatography with Ethanol:Ammonia:Water = 8:1:1. The crude antibiotic KL39 was active against a broad range of plant pathogenic fungi, Rhizoctonia solani, Pyricularia oryzae, Monilinia fructicola, Botrytis cinenea, Alteranria kikuchiana, Fusarium oxysporum and Fusarium solani. The purified antifungal antibiotic KL39 had a powerful biocontrol activity against red-pepper phytophthora blight disease with in vivo pot test as well as the strain B. megaterium KL 39.