• Title/Summary/Keyword: Bacillus sp. koji

Search Result 10, Processing Time 0.027 seconds

Physicochemical Properties of Kochujang Prepared by Bacillus sp. Koji (Bacillus sp. koji가 고추장의 품질 특성에 미치는 영향)

  • Kim, Dong-Han;Choi, Hee-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1174-1181
    • /
    • 2003
  • A part of Aspergillus oryzae koji was replaced with Bacillus sp. koji to improve the quality of kochujang, and the resulting effects on enzyme activities, microbial characteristics, and physicochemical properties were investigated during fermentation. The activity of amylase was higher in the kochujang prepared with Asp. oryzae koji. The activity of protease increased as the ratio of Bacillus. sp. koji increased. Viable cell counts of yeast and bacteria of the kochujang increased with increasing ratio of Bacillus sp. koji. The Hunter a-values of the Bacillus sp. koji kochujang were higher, and the degree of increase in the total color difference $({\Delta}\;E)$ was lower in the Bacillus sp. koji group. Consistency and water activity of the kochujang prepared with Bacillus sp. koji was higher, and the pH and titratable acidity of the kochujang also changed slightly. As the ratio of Asp. oryzae koji increased, sugar content decreased. However, the ethanol content of the kochujang did not significantly change. Amino nitrogen content of the kochujang increased, while ammonia nitrogen content decreased as the ratio of Bacillus sp. koji increased. After 12 weeks of fermentation, the result of sensory evaluation showed that C kochujang (75% of Asp. oryzae koji replaced by Bacillus sp.) was more acceptable (p<0.05) than the other groups in taste, color, flavor, and overall acceptability.

Studies on the Microflora and Enzyme Activity in Processing of Accelerated Low Salt-Fermented Anchovy by adding koji (코오지를 이용한 속성 저식염 멸치젓의 미생물상과 효소활성)

  • 백승화;임미선;김동한
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.392-397
    • /
    • 1996
  • To produce low salt fermented anchovy by an accelerated method with Asp. oryzae and Bacillus sp. koji, enzyme activity and variation of microflora during the 60 day fermentation were examined. Bacterial counts changed a little during the fermentation with the highest on day 40 for proteolytic and anaerobic bacteria and on day 20 for aerobic bacteria. Proteolytic, lipolytic, aerobic, and anaerobic bacteria counts were higher in the Bacillus sp. koji added anchovy paste than in others. The protease and lipase activities reached the highest point on day 20 and 30, respectively, and decreased gradually afterwards. The protease activity was higher in Asp. oryzae koji than in bacillus sp. koji, but the lipase activity was to the contrary.

  • PDF

Studies on the Taste Properties in Processing of Accelerated Low Salt-Fermented Anchovy by adding koji (코오지를 이용한 속성 저식염 멸치젓의 맛 특성)

  • 백승화;임미선;김동한
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.398-403
    • /
    • 1996
  • To produce low salt fermented anchovy by an accelerated method with Asp. oryzae and Bacillus sp. koji and taste properties after the 60 day fermentation were examined. The main free amino acids of 60 day fermented anchovy paste were valine, isoleucine, proline, alanine, lysine, glutamic acid and aspartic acid. Total amount of free amino acids was the highest in non koji anchovy paste wit 2,624.76mg%. Among the koji added samples, Asp. oryzae koji added on was the highest in the amount o free amino acids. Hypoxanthine accounted for 84.14~95.4% of total nucleotides and their related compounds; Asp. oryzae koji added anchovy paste was the highest in nucleotides other related. Citric acid and lactic acid accounted for 94.9~96.7% of total non-volatile organic acids; Asp. oryzae koji added sample was the highest in non-volatile organic acids with 287.93mg%. The Hunter a and b values gradually increased during the fermentation, but the L value decreased until day 30 or 40 and increased steadily after that. The a and b values were higher in the use of Asp. oryzae koji than in Bccillus sp. koji, but the L value was to the contrary. The Asp. oryzae koji added anchovy paste was good in the aspect of color and taste compared to others. In the aspect of odor, the anchovy paste using the mixture of Asp. oryzae and Bacillus sp. koji was the best. Overall aceptability of sensory evaluation was higher in the mixture of Asp. oryzae and Bacillus sp. koji tan in the others.

  • PDF

Studies on the Physicochemical properties in Processing of Accelerated Low Salt-Fermented Anchovy by adding koji (코오지를 이용한 속성 저식염 멸치젓의 성분)

  • 백승화;임미선;김동한
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.385-391
    • /
    • 1996
  • To produce low salt fermented anchovy by an accelerated method with Asp. oryzae and Bacillus sp. koji and change of physicochemical properties in the fermentation during 60 days were examined. The contents of moisture, crude protein, ash and salinity of salted anchovy changed little during the fermentation with 62.5~63.8%, 12.0~14.1%, 12.8~13.8%, and 12.8~13.8%, respectively. but crude lipid decreased from 15.5~15.8% initially to 13.1~13.9% finally. The p during the fermentation decreased slowly until day 50 and increased afterwards. Acidity increased remarkably on day 10 and changed little afterwards. This increase in acidity was particularly observed in the use of Asp. oryzae koji. Amino nitrogen contents sharply increased until day 20 wit 686.0~756.0mg% and then increased slowly. Ammonia nitrogen contents in the use of koji increased until day 40 or 50 and decreased after that ; while those without koji steadily increased until day 60. The TBA values for all the samples reached the highest point on day from 20 to 30 and decreased afterwards. The TBA values and ammonia nitrogen contents were higher in Bacillus sp. koji than in Asp. oryzae koji. The alcohol contents of anchovy paste a little decreased during 10 days, increased slowly after that until day 50, and then decreased. The content of alcohol was higher in the use of koji than in the non koji.

  • PDF

Antimicrobial activities of Monascus koji extracts (식품유해균에 대한 홍국 추출물의 항균활성)

  • Kim, Eun-Young;Rhyu, Mee-Ra
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.76-81
    • /
    • 2008
  • Currently, natural food colorants and preservatives are being used for their general health benefits. Monascus koji, the product of certain fungi that grow on rice grains, has been added to many foods for coloring and preservation. In this study, the antimicrobial activities of Monascus koji ethanol extracts were investigated. Six Monascus strains (M. araneosus KFRI 00371, M. kaoliang ATCC 46597, M. pilosus IFO 4520, M. purpureus IFO 4482, M. ruber IFO 32318 and M. sp. ATCC 16437) were selected based on their relative intensity of red pigment. Two Monascus extracts, M. kaoliang ATCC 46597 and M. purpureus IFO 4482, displayed antimicrobial activities against Bacillus subtilis, B. cereus, Micrococcus luteus, Staphylococcus aureus and Salmonella typhimurium in concentration-dependent manners. The two extracts showed their strongest antimicrobial activity against S. typhimurium, a cause of food poisoning. Therefore, these results suggest that Monascus koji could be used as a natural food colorant and preservative.

Effect of Bacillus Strains on the Chungkookjang Processing -III. Changes of the Free Amino Acid Contents and Nitrogen Compounds during Chungkookjang Koji Preparation- (균주(菌株)를 달리한 청국장 제조(製造)에 관(關)한 연구(硏究) -제3보(第三報) : 청국장의 유리(遊離) 아미노산(酸) 함량(含量)과 질소성분(窒素成分)-)

  • Suh, Jeong-Sook;Ryu, Myung-Ki;Hur, Yun-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.385-391
    • /
    • 1983
  • The change of free amino acid contents and nitrogen compounds in the course of the Chungkookjang fermentation that occurred by utilizing Bacillus natto and Bacillus subtilis are to the following effects. pH, during the growth period, that is 6.35 in pH at the first stage of fermentation, were turned into 8.2 after 72 hours. Crude protein content increased irregularly from 16.82%-18% and total sugar decreased. Increasing with the progress of fermentation time, protease activity showed the maximum value between 48-60 hours, but Bacillus natto activated a little than Bacillus subtilis. Amino nitrogen and water soluble nitrogen content increased but difference was found that is, Bacillus natto increased more than Bacillus subtilis. Glutamic acid content was the highest among the contents of free amino acid between both Bacillus sp. and the order of the next contents showed as leucine, phenylalanine, histidine alanine. arginine, but difference was found between Bacillus sp., that is, Bacillus natto was higher than Bacillus subtilis. In view of the results as above, Bacillus natto was excellent than Bacillus subtillus as Bacillus strains of Chungkookjang koji production.

  • PDF

Rapid Processing of the Fish Sauce and Its Quality Evaluation (속성어간장 제조 및 품질 평가)

  • Shin, Suk-U;Kwon, Mi-Ae;Jang, Mi-Sun;Kang, Tae-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.666-672
    • /
    • 2002
  • Changes in chemical characteristic, microflora, and sensory evaluation of fish sauce extracted at an interval of one week from fermented solution were investigated. pH was reduced from 6.0 to 4.5, and trimethylamine oxide from 132.5 to 87.2 mg/100g during fermenting periods. Trimethylamine increased from 5.6 to 50.2 mg/100g, and volatile basic nitrogen from 48.3 to 232.5 mg/100g. Bacterial flora isolated from the fish sauce were 70% Lactobacillus sp. and 13% Bacillus sp. Among the free amino acids, alanine, glutamic acid, valine, and methionine contents constitute 40% of the total free amino acids. Major non-volatile organic acid of the fish sauce was lactic acid (76%). Sensory evaluation results of the fish sauce were higher than the traditional soybean sauce after 28 days of fermentation.

Fermentation characteristics of mulberry (Cudrania tricuspidata) fruits produced using microbes isolated from traditional fermented food, and development of fermented soybean food (전통장류로부터 분리한 발효미생물을 이용한 꾸지뽕 열매 발효물의 특성 및 장류제품 개발)

  • Lee, Eun-Sil;Jo, Seung-Wha;Yim, Eun-Jung;Kim, Yun-Sun;Park, Hae-Suk;Kim, Myung-Kon;Cho, Sung-Ho
    • Food Science and Preservation
    • /
    • v.21 no.6
    • /
    • pp.866-877
    • /
    • 2014
  • The aim of this study was to develop a new functional traditional fermented soybean food using Cudrania tricuspidata fruits and fermentation microbes isolated from traditional fermented food. Aspergillus oryzae koji, Lactobacillus sp., and Bacillus sp. were used for the selection of a suitable microbe for the fermentation of Cudrania tricuspidata fruits, and as a result, Bacillus licheniformis SCDB 1234 was selected. SCDB 1234 enhanced the concentration of kaempferol in the Cudrania tricuspidata fruits from 9.54 to $217.04{\mu}g/g$ (about 22 times). The DPPH radical scavenging activity of the fermented materials was similar to that of BHA and BHT (92~99 ppm). The tyrosinase inhibitory activity was high with arbutin (95 ppm) and kojic acid (90 ppm). Doenjang-added fermentation materials of the Cudrania tricuspidata fruits were developed, and the organic acid, reducing sugar, and free amino acid of the developed Doenjang were analyzed. The pancreatic lipase inhibitory (PLI) activity and ${\alpha}$-glucosidase inhibitory (AGI) activity of the fermentation materials of the Cudrania tricuspidata fruits and the developed Doenjang were investigated, and it was found that after fermentation, the PLI and AGI activities of the fermentation materials of the Cudrania tricuspidata fruits were higher than those before fermentation, and that the AGI activity of the developed Doenjang after aging ($91.25{\pm}0.04%$) was higher than that before aging ($84.89{\pm}0.08%$).

Microbial Diversity during Fermentation of Sweet Paste, a Chinese Traditional Seasoning, Using PCR-Denaturing Gradient Gel Electrophoresis

  • Mao, Ping;Hu, Yuanliang;Liao, Tingting;Wang, Zhaoting;Zhao, Shumiao;Liang, Yunxiang;Hu, Yongmei
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.678-684
    • /
    • 2017
  • The aim of this study was to elucidate the changes in the microbial community and biochemical properties of a traditional sweet paste during fermentation. PCR-denaturing gradient gel electrophoresis (DGGE) analysis showed that Aspergillus oryzae was the predominant species in the koji (the fungal mixture), and the majority of the fungi isolated belonged to two Zygosaccharomyces species in the mash. The bacterial DGGE profiles revealed the presence of Bacillus subtilis during fermentation, and Lactobacillus acidipiscis, Lactobacillus pubuzihii, Lactobacillus sp., Staphylococcus kloosi, and several uncultured bacteria were also detected in the mash after 14 days of main fermentation. Additionally, during main fermentation, amino-type nitrogen and total acid increased gradually to a maximum of $6.77{\pm}0.25g/kg$ and $19.10{\pm}0.58g/kg$ (30 days) respectively, and the concentration of reducing sugar increased to $337.41{\pm}3.99g/kg$ (7 days). The 180-day fermented sweet paste contained $261.46{\pm}19.49g/kg$ reducing sugar and its pH value remained at around 4.65. This study has used the PCR-DGGE technique to demonstrate the microbial community (including bacteria and fungi) in sweet paste and provides useful information (biochemical properties) about the assessment of the quality of sweet paste throughout fermentation.

Microbiological and Enzymological Studies on Takju Brewing (탁주(濁酒) 양조(釀造)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.69-100
    • /
    • 1968
  • 1. In order to investigate on the microflora and enzyme activity of mold wheat 'Nuruk' , the major source of microorganisms for the brewing of Takju (a Korean Sake), two samples of Nuruk, one prepared at the College of Agriculture, Chung Nam University (S) and the other perchased at a market (T), were taken for the study. The molds, aerobic bacteria, lactic acid bacteria, and yeasts were examined and counted. The yeasts were classified by the treatment with TTC (2, 3, 5 triphenyltetrazolium chloride) agar that yields a varied shade of color. The amylase and protease activities of Nuruk were measured. The results were as the followings. a) In the Nuruk S found were: Aspergillus oryzae group, $204{\times}10^5$; Black Aspergilli, $163{\times}10^5$; Rhizogus, $20{\times}10^5$; Penicillia, $134{\times}10^5$; Areobic bacteria, $9{\times}10^6-2{\times}10^7$; Lactic acid bacteria, $3{\times}10^4$ In the Nuruk T found were: Aspergillus oryzae group, $836{\times}10^5$; Black Aspergilli, $286{\times}10^5$; Rhizopus, $623{\times}10^5$; Penicillia, $264{\times}10^5$; Aerobic bacteria, $5{\times}10^6-9{\times}10^6$; Lactic acid bacteria, $3{\times}10^4$ b) Eighty to ninety percent of the aerobic bacteria in Nuruk S appeared to belong to Bacillus subtilis while about 70% of those in Nuruk T seemed to be spherical bacteria. In both Nuruks about 80% of lactic acid bacteria were observed as spherical ones. c) The population of yeasts in 1g. of Nuruk S was about $6{\times}10^5$, 56.5% of which were TTC pink yeasts, 16% of which were TTC red pink yeasts, 8% of which were TTC red yeasts, 19.5% of which were TTC white yeasts. In Nuruk T(1g) the number of yeasts accounted for $14{\times}10^4$ and constituted of 42% TTC pink. 21% TTC red pink 28% TTC red and 9% TTC white. d) The enzyme activity of 1g Nuruk S was: Liquefying type Amylase, $D^{40}/_{30},=256$ W.V. Saccharifying type Amylase, 43.32 A.U. Acid protease, 181 C.F.U. Alkaline protease, 240C.F.U. The enzyme activity of 1g Nuruk T was: Liquefying type Amylase $D^{40}/_{30},=32$ W.V. Saccharifying type amylase $^{30}34.92$ A.U. Acid protease, 138 C.F.U. Alkaline protease 31 C.F.U. 2. During the fermentation of 'Takju' employing the Nuruks S and T the microflora and enzyme activity throughout the brewing were observed in 12 hour intervals. TTC pink and red yeasts considered to be the major yeasts were isolated and cultured. The strains ($1{\times}10^6/ml$) were added to the mashes S and T in which pH was adjusted to 4.2 and the change of microflora was examined during the fermentation. The results were: a) The molds disappeared from each sample plot since 2 to 3 days after mashing while the population of aerobic bacteria was found to be $10{\times}10^7-35{\times}10^7/ml$ inS plots and $8.2{\times}10^7-12{\times}10^7$ in plots. Among them the coccus propagated substantially until some 30 hours elasped in the S and T plots treated with lactic acid but decreased abruptly thereafter. In the plots of SP. SR. TP. and TR the coccus had not appeared from the beginning while the bacillus showed up and down changes in number and diminished by 1/5-1/10 the original at the end stage. b) The lactic acid bacteria observed in the S plot were about $7.4{\times}10^7$ in number per ml of the mash in 24 hours and increased up to around $2{\times}10^8$ until 3-4 days since. After this period the population decreased rapidly and reached about $4{\times}10^5$ at the end, In the plot T the lactic acid becteria found were about $3{\times}10^8$ at the period of 24 fours, about $3{\times}10$ in 3 days and about $2{\times}10^5$ at the end in number. In the plots SP. SR. TP, and TR the lactic acid bacteria observed were as less as $4{\times}10^5$ at the stage of 24 hours and after this period the organisms either remained unchanged in population or ceased to exist. c) The maiority of lactic acid bacteria found in each mash were spherical and the change in number displayed a tendency in accordance with the amount of lactic acid and alcohol produced in the mash. d) The yeasts had showed a marked propagation since the period of 24 hours when the number was about $2{\times}10^8$ ㎖ mash in the plot S. $4{\times}10^8$ in 48 hours and $5-7{\times}10^8$ in the end period were observed. In the plot T the number was $4{\times}10^8$ in 24 hours and thereafter changed up and down maintaining $2-5{\times}10^8$ in the range. e) Over 90% of the yeasts found in the mashes of S and T plots were TTC pink type while both TTC red pink and TTC red types held range of $2{\times}10-3{\times}10^7$ throughout the entire fermentation. f) The population of TTC pink yeasts in the plot SP was as $5{\times}10^8$ much as that is, twice of that of S plot at the period of 24 hours. The predominance in number continued until the middle and later stages but the order of number became about the same at the end. g) Total number of the yeasts observed in the plot SR showed little difference from that of the plot SP. The TTC red yeasts added appeared considerably in the early stage but days after the change in number was about the same as that of the plot S. In the plot TR the population of TTC red yeasts was predominant over the T plot in the early stage which there was no difference between two plots there after. For this reason even in the plot w hers TTC red yeasts were added TTC pink yeasts were predominant. TTC red yeasts observed in the present experiment showed continuing growth until the later stage but the rate was low. h) In the plot TP TTC pink yeasts were found to be about $5{\times}10^8$ in number at the period of 2 days and inclined to decrease thereafter. Compared with the plot T the number of TTC pink yeasts in the plot TP was predominant until the middle stage but became at the later stage. i) The productivity of alcohol in the mash was measured. The plot where TTC pink yeasts were added showed somewhat better yield in the earely stage but at and after the middle stage the difference between the yeast-added and the intact mashes was not recognizable. And the production of alcohol was not proportional to the total number of yeasts present. j) Activity of the liquefying amylase was the highest until 12 hours after mashing, somewhat lowered once after that, and again increased around 36-48 hours after mashing. Then the activity had decreased continuously. Activity of saccharifying amylase also decreased at the period of 24 hours and then increased until 48 hours when it reached the maximum. Since, the activity had gradually decreased until 72 hours and rapidly so did thereafter. k) Activity of alkaline protease during the fermentation of mash showed a tendency to decrease continusously although somewhat irregular. Activity of acid protease increased until hours at the maximum, then decreased rapidly, and again increased, the vigor of acid protease showed better shape than that of alkaline protease throughout. 3. TTC pink yeasts that were predominant in number, two strains of TTC red pink yeasts that appeared throughout the brewing, and TTC red yeasts were identified and the physiological characters examined. The results were as described below. a) TTC pinkyeasts (B-50P) and two strains of TTC red pink yeasts (B-54 RP & B-60 RP) w ere identified as the type of Saccharomyces cerevisiae and TTC pink red yeasts CB-53 R) were as the type of Hansenula subpelliculosa. b) The fermentability of four strains above mentioned were measured as follows. Two strains of TTC red pink yeasts were the highest, TTC pink yeasts were the lowest in the fermantability. The former three strains were active in the early stage of fermentation and found to be suitable for manufacturing 'Takju' TTC red yeasts were found to play an important role in Takju brewing due to its strong ability to produce esters although its fermentability was low. c) The tolerance against nitrous acid of strains of yeast was marked. That against lactic acid was only 3% in Koji extract, and TTC red yeasts showed somewhat stronger resistance. The tolerance against alcohol of TTC pink and red pink yeasts in the Hayduck solution was 7% while that in the malt extract was 13%. However, that of TTC red yeasts was much weaker than others. Liguefying activity of gelatin by those four strains of yeast was not recognized even in 40 days. 4. Fermentability during Takju brewing was shown in the first two days as much as 70-80% of total fermentation and around 90% of fermentation proceeded in 3-4 days. The main fermentation appeared to be completed during :his period. Productivity of alcohol during Takju brewing was found to be apporximately 65% of the total amount of starch put in mashing. 5. The reason that Saccharomyces coreanuss found be Saito in the mash of Takju was not detected in the present experiment is considered due to the facts that Aspergillus oryzae has been inoculated in the mold wheat (Nuruk) since around 1930 and also that Koji has been used in Takju brewing, consequently causing they complete change in microflora in the Takju brewing. This consideration will be supported by the fact that the original flavor and taste have now been remarkably changed.

  • PDF