• Title/Summary/Keyword: Bacillus subtilis

Search Result 1,790, Processing Time 0.033 seconds

Isolation and development of Bacillus subtilis S1-0210 as a biocontrol agent of gray mold of strawberry

  • Nguyen, Hang T.T.;Oh, S.O.;Hur, J.S.;Koh, Y.J.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.98.1-98
    • /
    • 2003
  • Antagonistic effect of bacterial strains isolated from phylloplane of strawberry plants grown In greenhouse was tested on Botrytis cinerea Among the promising bacterial strains, Bacillus sp. S1-0210 showed highest inhibition of mycelial growth of B. cinerea and a broad spectrum of antifungal activities against many plant pathogenic fungi in vitro. Bacillus sp. S1-0210 was identified as Bacillus subtilis based on the analysis of 185 rDNA as well as its biochemical characteristics. Application of wettable powder formulation of B. subtiiis S1-0210 significantly reduced the incidence of gray mold on trawberry fruits during storage. Results showed that treatment of B. subtilis S1-0210 decreased the incidence of gray mold by 4.8% whereas the incidence in control was 77.9%, indicating that the formulation of B. subtilis S1-0210 will be practically applied on strawberry fruits as a biocontrol agent of gray mold during storage.

  • PDF

Regulation of Cycloinulooligosaccharide Fructanotransferase Synthesis in Bacillus macerans and Bacillus subtilis

  • Kim, Hwa-Young;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.877-880
    • /
    • 2000
  • Cycloinulooligosaccharide fructanotransferase (CFTase) converts inulin into cyclooligosaccharides consisting of six to eight molecules $\beta$-($2\rightarrow1$)-linked cyclic D-fructofuranose through intramolecular transfructosylation. We have examined the regulation of CFTase synthesis in Bacillus macerans and Bacillus subtilis. Synthesis of the CFTase was induced by inulin and it was subject to carbon catabolite repression (CCR) by glucose in both microorganisms. The DNA sequence upstream of the promoter of the CFTase gene was not involved in the inulin induction and glucose repression of the CFTase gene expression in B. subtilis. This suggests that the DNA element(s) responsible for the inuline induction and glucose repression is located downstream of the promoter region. Unexpectedly, the CCR of the expression of CFTase gene was observed not to be dependent on CcpA protein in B. subtilis.

  • PDF

Overproduction and Secretion of $\beta$-Glucosidase in Bacillus subtilis

  • Kim, Jeong-Hyun;Lee, Baek-Rak;Moo, young-Pack
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.141-145
    • /
    • 1998
  • Overproduction of intracellular ${\beta}$-glucosidase was attempted by modifying the promoter region of a ${\beta}$-glucosidase gene cloned from Cellulomonas fimi and expressing it in Bacillus subtilis DB 104. A strong engineered promoter, BJ27UΔ88, was fused to the ${\beta}$-glucosidase gene after removing its native promoter. An effective Shine-Dalgamo sequence (genel0 of phage T7) was inserted between the promoter and the ${\beta}$-glucosidase structural gene. The modified gene was overexpressed in B. subtilis and produced 1121.5 units of ${\beta}$-glucosidase per mg protein which is about $12\%$ of total intracellular protein. Secretion of overproduced intracellular ${\beta}$-glucosidase was attempted by using the signal sequence of the Bacillus endoglucanase gene as well as an in-frame hybrid protein of endoglucanase. The hybrid protein was normally secreted into the culture medium and still retained ${\beta}$-glucosidase activity.

  • PDF

Growth Inhibition of Microcystis aeruginosa by a Glycolipid-Type Compound from Bacillus subtilis C1

  • Kim, Hee-Sik;Ahn, Chi-Yong;Joung, Seung-Hyun;Ahn, Jong-Seog;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1240-1242
    • /
    • 2010
  • We attempted to identify the compound responsible for the growth inhibition of Microcystis aeruginosa occurring when a culture broth of Bacillus subtilis C1 was added to the medium. The active compound was purified from B. subtilis C1 culture broth by adsorption chromatography and HPLC, and was identified as a type of glycolipid based on $^1H$ NMR and MS analyses. The purified active compound completely inhibited the growth of M. aeruginosa at a concentration of 10 ${\mu}g/ml$. This is the first report of a glycolipid produced by a Bacillus strain that has potential as an agent for the selective control of bloom-forming M. aeruginosa.

Expression of a Bacillus subtilis Mannanase Gene in Corynebacterium lactofementum (Corynebacterium lactofermentum에서 Bacillus subtilis의 Mannanase 유전자 발현)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.405-407
    • /
    • 2009
  • A Bacillus subtilis mannanase gene was subcloned into an Escherichia coli- Corynebacterium lactofermentum shuttle vector pHE83, and the resultant plasmid pHE83M was transferred into an endogenous plasmid-free strain of C. lactofermentum. Mannanase produced by the recombinant C. lactofermentum (pHE83M) was secreted extracellulary at the level of 86%, and the remaining activity of mannanase was detected in the cell-free extract. The maximum mannanase productivity of the recombinant strain reached 8.1 unit/mL in the culture filtrate of LB medium. According to the zymogram of mannanase on SDS-PAGE, it was found that the mannanase produced by the recombinant C. lactofermentum could be maintained stably with a migration identical to the mannanase produced by the parental strain, B. subtilis WL-3.

Seed Coating for the Application of Biocontrol Agent Bacillus subtilis YBL-7 against Phytopathogens (길항세균 Bacillus subtilis YBL-7 건조포자체의 종자피막화에 의한 생물학적 방제)

  • 장종원;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.243-248
    • /
    • 1995
  • Agrochemicals for the plant-disease control are criticized severely for causing environmental pollution and residual problems, and consequently microbial disease control agents are expected to be safer and more economical for sustainable agriculture. Treatment of biological control agents to seed requires the use of effective delivery systems that allow full expression of the benefical qualities of the bioprotectant. For the activation and establishment of bioprotectant around the plant seed which are able protect the seeds and seedlings from pathogen attack, the optimal liquid coating formulation was obtained using 2% sodium carboxymethyl cellulose (binder), 20% sesame dregs (solid particulate material), and dried spore of Bacillus subtilis YBL-7 (bioprotectants, 10 mg/g of seed). Suppressive of root rot was demonstrated in pot trials with coated kidney bean (Phaseolus vulgaris L.) seeds. Coated seeds with B. subtilis YBL-7 spore in F. solani-infested soil reduced disease incidence by 85% to 90% after 30 days.

  • PDF

Effects of Nucleic Acid Related Compounds on Cytidine Deaminase Activity Produced by Bacillus subtilis ED 213 (Bacillus subtilis ED 213 Cytidine Deaminase 활성에 미치는 핵산관련물질의 영향)

  • 유대식;박정문;서태수;김정배;윤종국
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.87-93
    • /
    • 1999
  • This study was carried out to investigate the effects of nucleic acid related compounds and metal ions on activities of cytidine deaminase from Bacillus subtilis ED 213. The purified cytidine deaminase was weakly inhibited by 1mM GMP, IMP and ATP, but not affected by other nucleic acid related compounds such as CMP and UDP. The apparent Km values for cytidine, deoxycytidine, 5 methylcy tidine, fluorodeoxycytidine, and 5 bromocytidine were calculated to be 6.6$\times$10-4M, 6.0$\times$10-4M, 0.9$\times$10-4M, 0.8$\times$10-4M, and 2.0$\times$10-3M, respectively. The cytidine deaminase was completely inhibited by 1mM Hg2+, and mildly inhibited over 40% by metal ions such as Na+ and Fe2+. However the enzyme activity was activated more than 40% by 1mM Mg2+.

  • PDF

Chromosomal Mapping of the cdd Gene Encoding Deoxycytidine-cytidine Deaminase in Bacillus subtilis (Bacillus subtilis의 시티딘 디아미나제를 코드하는 cdd 유전자의 Chromosomal Mapping)

  • Song, Bang-Ho;Jan Neuhard
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.536-539
    • /
    • 1988
  • A mutant of Bacillus subtilis with a defective cdd gene encoding deoxycytidine-cytidine deaminase (EC 3.5.4.5) has been characterized genetically. The genetic lesion, cdd, causing the altered deoxycytidine-cytidine deaminase was mapped at 225 min on the linkage map of B. subtilis by AR9 transduction, Transductional analysis of the cdd region established the gene order in clockwise as trp-lys-cdd-aroD. The cdd gene was linked 72% with the aroD and 20% with the lys.

  • PDF

Assessment and Optimization of Xylanase Production Using Mono-Culture and Co-Cultures of Bacillus subtilis and Bacillus pumilus

  • Chitranshu Pandey;Neeraj Gupta
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.59-68
    • /
    • 2023
  • Xylanase is an industrially relevant enzyme used for the production of xylobiose and xylose. Various methods are used to enhance the microbial yield of xylanase. In the present study, co-culturing of Bacillus subtilis and Bacillus pumilus were investigated using submerged fermentation for xylanase production, which was markedly increased when sal, sagwan, newspaper, wheat bran, and xylan were used as single carbon sources. Maximum xylanase production was reported after 5 days of incubation in optimized media at pH 7.0 and 37℃, resulting in 2.69 ± 0.25 µmol/min by coculture. The 1:1 ratio of sal and sagwan in optimized production media was shown to be suitable for xylanase synthesis in submerged fermentation (SMF). In comparison to mono-culture using B. pumilus and B. subtilis, co-culturing resulted in an overall 3.8-fold and 2.15-fold increase in xylanase production, respectively.

Expression of a $\beta$-1,3-Glucanase Gene from Bacillus circulans in B. subtilis and B. megaterium (Bacillus subtilis와 Bacillus megaterium에서의 $\beta$-1,3-glucanase 유전자의 발현)

  • 김기훈;김지연;김한복;이동석
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.253-258
    • /
    • 2001
  • A Bacillus circulans KCTC3004 $\beta$-1,3-glucanase gene contained in a recombinant plasmid pLM460 derived from subcloning the original recombinant plasmid pLM530 was trasferred into a new shuttle vector plasmid pLMS1180 by ligating linearized DNAs of pLM460 and pUB110. B. subtilis RM125 and B. megaterium ATCC14945 transformed with pLMS1180 produced the $\beta$-1,3-glucanase substantially. Most of the enzyme was produced during the exponential growth period. The maxium activities of the $\beta$-1,3-glucanase produced by the Bacillus transformants were compared with that of the B. circulans gene donor strain. The B. subtilis RM125 (pLM1180) enzyme showed the activity 14 times higher than that of the gene donor cells, followed by the B. megaterium ATCC14945 (pLMS 1180) enzyme with activity 5 times higher than that of the gene donor cells. While E. coli secreted about 7% of the produced enzyme, B. subtilis excreted the enzyme into the medium wholly and B. megaterium about 97% of the total product. The SDS-PAGE of this enzyme produced in E. coli (pLMS1180), B subtilis (pLMS1180) or B. megaterium (pLMS1180) indicated a molecular weight of 38,000. The enzymes overproduced in three different host cells hydrolyzed laminarin to produce mainly laminaribiose, laminaritriose, and laminarioligosaccharides. The plasmid pLMS1180 was stable in B. megaterium, E. coli, but was unstable in B. subtilis.

  • PDF