• Title/Summary/Keyword: Bacillus velezensis

Search Result 55, Processing Time 0.031 seconds

Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains

  • Wang, Junru;Xing, Juyuan;Lu, Jiangkun;Sun, Yingjiao;Zhao, Juanjuan;Miao, Shaohua;Xiong, Qin;Zhang, Yonggang;Zhang, Guishan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.794-808
    • /
    • 2019
  • Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.

Biocontrol of Leaf Mustard Powdery Mildew Caused by Erysiphe cruciferarm using Bacillus velezensis YP2 (Bacillus velezensis YP2의 겨자채 흰가루병의 생물적 방제)

  • Lee, Sang Yeob;Weon, Hang Yeon;Kim, Jeong Jun;Han, Ji Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.369-374
    • /
    • 2016
  • Bacillus velezensis YP2 inhibited the mycelial growth of several plant pathogens including Cercespora spp., Septoria sp., Phoma sp., Botrytis cinerea and Sclerotinia scleotiorum occurring in leafy vegetables. Control efficacy for powdery mildew caused by Erysiphe cruciferarm on red leaf mustard and cheong mustard by treatment of spraying with 10-fold diluted Luria-Bertani (LB) broth of B. velezensis YP2 was 91.8% and 80.9%, respectively. When B. velezensis YP2 was treated four times with five-day interval, three times at seven-day interval and two times at ten day interval in the greenhouse test, the control effect of red leaf mustard powdery mildew was 70.6%, 65.0% and 40.9%, respectively. Also B. velezensis YP2 could promote the seed germination and plant growth of led leaf mustard. The results showed that the culture broth of B. velezensis YP2 was very effective to control the powdery mildew of leaf mustard.

Biocontrol of Ginseng Damping-off by Bacillus velezensis CC112 (Bacillus velezensis CC112 균주의 인삼 잘록병에 대한 생물적 방제)

  • Lee, Sang Yeob;Song, Jaekyeong;Park, Kyeong Hun;Weon, Hang Yeon;Kim, Jeong Jun;Han, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.176-183
    • /
    • 2016
  • Bacillus velezensis CC112 inhibited the mycelial growth of several plant pathogens, including Rhizoctonia solani, causing damping-off on ginseng. The control efficacies of B. velezensis CC112 against R. solani by seed dipping in LB and BSM broth diluted 10 times, soil dipping, and soil drenching with LB broth diluted 10 times were 65.8%, 67.1%, and 64.2%, respectively. Treatment of soil drenching with the 100 times diluted prototype of B. velezensis CC112 against R. solani and Pythium sp. by soil revealed control efficacies of 77.3% and 65.7%, respectively. These results indicate that B. velezensis CC112 is a prospective biofungicide for the biological control of ginseng damping off.

Isolation of Bacillus velezensis SSH100-10 with Antifungal Activity from Korean Traditional Soysauce and Characterization of Its Antifungal Compounds (전통재래 간장으로부터 항진균 활성 B. velezensis SSH100-10의 분리와 그 항진균 물질의 특성 구명)

  • Chang, Mi;Moon, Song Hee;Chang, Hae Choon
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.757-766
    • /
    • 2012
  • The SSH100-10 bacterial strain, which exhibits strong antifungal (anti-mold and anti-yeast) activity, was isolated from traditional korean soysauce aged 100 years. The strain was identified as Bacillus velezensis based on Gram-staining, the biochemical properties and 16S rRNA gene sequence determination. B. velezensis SSH100-10 showed strong proteinase activity and NaCl tolerance, but did not produce enterotoxin. Two-antifungal compounds from B. velezensis SSH100-10 were purified using SPE, preparative HPLC, and reverse phase-HPLC. The purified antifungal compounds were identified as $C_{14}$ and $C_{15}$ iturin through MALDI-TOF-MS and amino acid composition analysis. The stability characteristics of the antifungal compounds after temperature, pH, and enzyme treatments suggested that B. velezensis SSH100-10 produced more than two antifungal compounds; pH-stable $C_{14}$ iturin A and $C_{15}$ iturin A, and unidentified pH-unstable compounds. The results suggested that B. velezensis SSH100-10 can be used in soybean fermentation as a starter. Moreover it has potential as a biopreservative in the food and feed industry and as a biocontrol agent in the field of agriculture.

Complete genome sequence of Bacillus velezensis YC7010, an endophytic bacterium with plant growth promoting, antimicrobial and systemic resistance inducing activities in rice (식물생육촉진, 항균 및 저항성 유도 효과를 나타내는 내생세균 Bacillus velezensis YC7010의 유전체 염기서열)

  • Harun-Or-Rashid, Md.;Hwang, Jeong Hyeon;Chung, Young Ryun
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.329-331
    • /
    • 2017
  • Bacillus velezensis YC7010 is an endophytic bacterium isolated from the rice rhizosphere in Jinju, Republic of Korea, with properties conductive to growth promotion, antibiosis and induced systemic resistance to significant, soil-borne rice fungal and bacterial pathogens. The genome of B. velezensis YC7010 comprises a 3,975,683 bp circular chromosome which consists of 3,790 protein-coding genes (86tRNA and 27rRNA genes). Based on genomic analysis, we identified genes involved in colonization and establishment inside the plant, biosynthesis of antibiotic compounds such as surfactin, plipapastatin, bacillibactin, and bacillaene, as well as the production of the phytohormones and volatile compounds which serve to promote the plants growth and development.

Cloning and Expression of a Fibrinolytic Enzyme Gene, aprECJ1, from Bacillus velezensis CJ1 Isolated from Myeolchi Jeotgal

  • Yoo, Ji Yeon;Yao, Zhuang;Lee, Se Jin;Jeon, Hye Sung;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.289-297
    • /
    • 2021
  • Bacillus velezensis CJ1, showing significant fibrinolytic activity, was isolated from Myeolchi Jeotgal, a popular Korean fermented seafood. When B. velezensis CJ1 was grown on four different culture media, the culture on the Luria-Bertani (LB) broth showed the highest fibrinolytic activity (102.94 mU/μl) at 48 h. LB was also the best medium for growth. SDS-PAGE of culture supernatant showed four major bands, 38, 35, 27, and 22 kDa in size. Fibrin zymography showed four active bands, 50, 47, 40, and 30 kDa in size. A gene homologous to aprE of the Bacillus species was cloned by PCR. DNA sequencing showed that aprECJ1 can encode a protease consisting of 382 amino acids. The translated amino acid sequence of AprECJ1 showed high identity values with those of B. velezensis strains and other Bacillus species. The aprECJ1 gene was introduced into B. subtilis WB600 using an E. coli-Bacillus shuttle vector, pHY300PLK, and overexpressed. A 27 kDa band corresponding to the mature form of AprECJ1 was produced and confirmed by SDS-PAGE and fibrin zymography. B. subtilis WB600 [pHYaprECJ1] showed 1.8-fold higher fibrinolytic activity than B. velezensis CJ1 at 48 h.

Enhancement of Plant Growth and Drying Stress Tolerance by Bacillus velezensis YP2 Colonizing Kale Root Endosphere (Bacillus velezensis YP2 균주의 근권 정착에 의한 케일의 생육 촉진 및 건조 스트레스 완화 효과)

  • Kim, Da-Yeon;Han, Ji-Hee;Kim, Jung-Jun;Lee, Sang-Yeob
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.2
    • /
    • pp.217-232
    • /
    • 2018
  • Drought is a major obstacle to high agricultural productivity, worldwide. In drought, it is usually presented by the simultaneous action of high temperature and drying. Also there are negative effects of plant growth under drying conditions. In this study, the effect of Bacillus velezensis YP2 on plant growth-promotion and soil drying stress tolerance of kale plants, Brassica oleracea var. alboglabra Bailey, were investigated under two different conditions; greenhouse and field environments. Root colonization ability of B. velezensis YP2 was also analysed by using plating culture method. As a result of the greenhouse test, the YP2 strain significantly promoted the growth of kale seedlings in increasement of 26.7% of plant height and 142.2% of shoot fresh weight compared to control. B. velezensis YP2 have the mitigation effect of drying injury of kale by decreasing of 39.4% compared to control. In the field test, B. velezensis YP2 strain was also found to be effective for plant growth-promotion and mitigation of drying stress injury on kale plants. Especially, relative water contents (RWC; %) were higher in B. velezensis YP2 treated kales than in control at 7, 10, 14 day after non-watering. The root colonization ability of YP2 strain was continued at least for 21 days after soil drenching treatment of B. velezensis YP2. Our result suggested that enhancement of plant growth and drying injury reduction of kale plants were involved in kale root colonization by B. velezensis YP2, which might be contributed to increasing water availability of plants. Consequentially, the use of B. velezensis YP2 might be a beneficial influence for improving productivity of kale plants under drying stress conditions.

Construction of a Recombinant Bacillus velezensis Strain as an Integrated Control Agent Against Plant Diseases and Insect Pests

  • Roh, Jong-Yul;Liu, Qin;Choi, Jae-Young;Wang, Yong;Shim, Hee-Jin;Xu, Hong Guang;Choi, Gyung-Ja;Kim, Jin-Cheol;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1223-1229
    • /
    • 2009
  • To construct a new recombinant strain of Bacillus velezensis that has antifungal and insecticidal activity via the expression of the insecticidal Bacillus thuringiensis crystal protein, a B. thuringiensis expression vector (pHT1K-1Ac) was generated that contained the B. thuringiensis cry1Ac gene under the control of its endogenous promoter in a minimal E. coli-B. thuringiensis shuttle vector (pHT1K). This vector was introduced into a B. velezensis isolate that showed high antifungal activities against several plant diseases, including rice blast (Magnaporthe grisea), rice sheath blight (Rhizotonia solani), tomato gray mold (Botrytis cinerea), tomato late blight (Phytophthora infestans), and wheat leaf rust (Puccinia recondita), by electroporation. The recombinant B. velezensis strain was confirmed by PCR using cry1Ac-specific primers. Additionally, the recombinant strain produced a protein approximately 130 kDa in size and parasporal inclusion bodies similar to B. thuringiensis. The in vivo antifungal activity assay demonstrated that the activity of the recombinant B. velezensis strain was maintained at the same level as that of wild-type B. velezensis. Furthermore, it exhibited high insecticidal activity against a lepidopteran pest, Plutella xylostella, although its activity was lower than that of a recombinant B. thuringiensis strain, whereas wild-type B. velezensis strain did not show any insecticidal activity. These results suggest that this recombinant B. velezensis strain can be used to control harmful insect pests and fungal diseases simultaneously in one crop.

Development of Genetic Selection Marker via Examination of Genome in Bacillus velezensis K10 (Bacillus velezensis K10 유전체 분석을 통한 균주 선발 마커 개발)

  • Sam Woong Kim;Young Jin Kim;Tae Wook Lee;Won-Jae Chi;Woo Young Bang;Tae Wan Kim;Kyu Ho Bang;Sang Wan Gal
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.897-904
    • /
    • 2023
  • This study was done to develope genetic markers with the unique characteristics of genes according to the genomic information of Bacillus velezensis K10. B. velezensis K10 maintained a total of 4,159,835 bps, which was found to encode 5,136 open reading frames (orfs). B. velezensis K10 was found to have much more gene migration due to external factors overall compared to standard strain B. velezensis JS25R. In order to discover genetic selection markers, orfs on the genome to be easily induced to gene mutation were surveyed such as recombinase, integrase, transposase, and phage-related genes. As a result of the investigation, 9 candidate markers were isolated with high possibility as genetic selection markers. Although a part in the various origin's areas showed specificities in comparison with homology, the selected markers were all existed in phage-related areas because they were relatively lower homologies in phage-related genes. PCR analysis was done on B. licheniformis K12, B. velezensis K10, B. subtilis, and B. cereus to establish them as inter-species candidate selection markers. As a result, it was confirmed that B. velezensis K10-specific PCR products were formed in a total of 6 primer sets such as BV3 and BV5 to 9. On the other hand, analysis at the subspecies level observed the formation of B. velezensis K10-specific PCR products in 4 primer sets such as BV3, 5, 8, and 9. Among them, since BV5 and BV8 were detected by very specific results, we suggest that BV5 and 8 can be used as B. velezensis K10 gene selection markers at the species and sub-species level.

Cultural characteristics of Bacillus velezensis HKB-1 in the water extract of the composted spent mushroom substrate of Lentinula edodes and biological control of Phytophthora blight disease of pepper (표고버섯 수확후배지 퇴비 추출물에서 Bacillus velezensis HKB-1의 배양적 특징 및 고추역병의 생물학적 방제)

  • Kim, Ja-Yoon;Seo, Hyun-Ji;Kang, Dae-Sun;Kang, Hee-Wan
    • Journal of Mushroom
    • /
    • v.19 no.4
    • /
    • pp.272-278
    • /
    • 2021
  • Bacillus velezensis HKB-1 was isolated from the composted spent mushroom substrate of Lentinula edodes (LeCSMS) and inhibited mycelial growth of phytopathogenic fungal species, Phythhopthora capsici, Collectotrichum coccodes and Fusarium oxysporium by more than 70%. B. velezensis HKB-1 showed bacterial growth rate 10 to 100 times higher than that of other commercial bacterial media in water extract of LeCSMS supplemented with 1% molasses. The LeCSMS medium was effective in promoting the growth of pepper and controlling Phytophthora blight disease of pepper.