• Title/Summary/Keyword: Bacterial culture

Search Result 1,384, Processing Time 0.031 seconds

Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato

  • Lee, Yong Seong;Naing, Kyaw Wai;Kim, Kil Yong
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.295-305
    • /
    • 2017
  • This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F), a bacterial grass culture (G), a 1/3 volume of G plus 2/3 F (GF), and F plus a synthetic fungicide (FSf) were applied to tomato leaves and roots. The result showed that the severity of Alternaria solani and Botrytis cinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF) and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.

Effect of Acetic Acid Concentration and Mixed Culture of Lactic Acid Bacteria on Producing Bacterial Cellulose Using Gluconacetobacter sp. gel_SEA623-2 (Gluconacetobacter sp. gel_SEA623-2를 이용한 Bacterial Cellulose 생산에 초산농도 및 유산균 혼합배양이 미치는 영향)

  • Kim, Kyung min;Kim, Jihyeon;Yang, Kyong Wol
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.227-232
    • /
    • 2014
  • In this study, Gluconacetobacter sp. gel_SEA623-2 isolated from citrus that produces bacterial cellulose was used to examine the effect of initial concentration of acetic acid and mixed culture inoculated with Lactobacillus plantarum KCCM 80077 on productivity of bacterial cellulose. In mixed culture added with 0.5% acetic acid, the viable cell count increased from $2.4{\times}10^6CFU/ml$ to $1.1{\times}10^7CFU/ml$ after 14 days of culture, and total acidity was about 0.3% higher than single culture added with 0.5% acetic acid, which implies that additional lactic acid was produced by L. plantarum KCCM 80077. In single culture, although bacterial cellulose productivity was higher when the initial concentrations of acetic acid were 0.0% and 0.5%, than when it was 1.0%, there was no significant difference. However, in mixed culture, adding 0.5% acetic acid resulted in dry weight of $37.83{\pm}6.81g/L$ and thickness of $10.33{\pm}0.58mm$, showing a significant difference from that of single culture added with 1% acetic acid, $28.40{\pm}1.23g/L$ and $7.50{\pm}0.50mm$ (P<0.05).

Culture Condition for the Production of Bacterial Cellulose with Gluconacetobacter persimmonus KJ145 (Giuconacetobacter persimmonus KJ145를 이용한 Bacterial Cellulose 생산조건)

  • Lee, Oh-Seuk;Jang, Se-Young;Jeong, Yong-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.572-577
    • /
    • 2002
  • We investigated the optimal condition for production of bacterial cellulose with Gluconacetobacter persimmonus KJ145. For bacterial cellulose production, optimal medium composition and culture conditions were conducted to determine. Apple juice (10$^{\circ}$Brix) medium was suitable than Hestrin & Schramm medium which is generally used for the bacterial cellulose production. When 1% pyruvate as carbon source was added to apple juice, bacterial cellulose production rose to high level. The effect of various nitrogen sources was investigated: CSL was found to be essential to high cellulose yields and the optimal CSL concentration was 10%. Optimal temperature and culture time for the bacterial cellulose production was 35$^{\circ}C$ and 16 days, respectively At the optimal condition Gluconacetobacter persimmonus KJ145 produced 8.96g/L of bacterial cellulose (dry weight), which was much higher than reported values.

Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media (곤충병원세균(Photorhabdus temperata ssp. temperata) 유래 곤충 면역 억제물질 생성 비교 연구를 통한 저렴한 세균 배지 선발)

  • Seo, Sam-Yeol;Jang, Ho-Jin;Kim, Kun-Woo;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.409-416
    • /
    • 2010
  • An entomopathogenic bacterium, Photorhabdus temperata ssp. temperata (Ptt), suppresses insect immune responses and facilitates its symbiotic nematode development in target insects. The immunosuppressive activity of Ptt enhances pathogenicity of various microbial pesticides including Bacillus thuringiensis (Bt). This study was performed to select a cheap and efficient bacterial culture medium for large scale culturing of the bacteria. Relatively cheap industrial bacterial culture media (MY and M2) were compared to two research media, Luria-Bertani (LB) and tryptic soy broth (TSB). In all tested media, a constant initial population of Ptt multiplied and reached a stationary phase at 48 h. However, more bacterial colony densities were detected in LB and TSB at the stationary phase compared to two industrial media. All bacterial culture broth gave significant synergism to Bt pathogenicity against third instars of the diamondback moth, Plutella xylostella. Production of bacterial metabolites extracted by either hexane or ethyl acetate did not show any significant difference in total mass among four culture media. Reverse phase HPLC separated the four bacterial metabolites, which were not much different in quantities among four bacterial culture broths. This study suggests that two industrial bacterial culture media can be used to economically culture Ptt in a large scale.

Ethyl Acetate Extract of Bacillus pumilus SH122 Induces Resistance Against Phytophthora Blight in Pepper Plant

  • Lee, Seoung-Hee;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.15 no.6
    • /
    • pp.319-322
    • /
    • 1999
  • In order to obtain bacterial metabolites inducing disease resistance in pepper plant, two hundred bacterial isolates were isolated from the rhizosphere soil of tobacco, cucumber, and pepper plant. Ethyl acetate extract of each bacterial culture was used to screening for induction of resistance against phytophthora blight of pepper plant. Application of ethyl acetate extract of an isolate SH122 culture to pepper plant conferred resistance against phytophthora blight consistently and significantly. According to cellular fatty acid analysis and other characteristics, the SH122 culture were significantly lower than those on control plants treated with ethyl acetate extract of nutrient broth. The B. pumilus SH122 itself of ethyl acetate extract of its culture did not show antifungal activity against phytophthora blight in pepper plants.

  • PDF

탈염소화 미생물과 영가철분을 이용한 토양중 테트라크로로에틸렌의 분해

  • ;K. Furukawa
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.136-139
    • /
    • 2003
  • The combined effect of bioaugmentation of dechlorinating bacterial cultures and addition of iron powder (Fe$^{0}$ ) on reductive dechlorination of tetrachloroethylene (PCE) and other chlorinated ethylenes in a artificially contaminated soil slurry (60$\mu$mo1es PCE/kg soil) were tested. Two different anaerobic bacterial cultures, a pure bacterial culture of Desulfitobacterium sp. strain Y-51 capable of dechlorinating PCE to cis-1, 2-dechloroethylene (cis-DCE) and the other enrichment culture PE-1 capable of dechlorinating PCE completely to ethylene, were used for the bioaugmentation test. Both treatments introduced with the strain Y-51 and PE-1 culture (3mg dry cell weight/kg soil) showed conversion of PCE to cis-DCE within 40 days. The treatments added with Fe$^{0}$ (0.1 -1.0 %(w/w)) alone to the soil slurry resulted in extended PCE dechlorination to ethylene and ethane and the, dechlorination rate depended on the amount of Fe$^{0}$ added. The combined use of the bacterial cultures with Fe$^{0}$ (0.1-1.0%) showed the higher PCE dechlorination rate than the separated application and the pattern of PCE dechlorination and end-product formation was different from those of the separated application. These results suggested that the combined application of Fe$^{0}$ and the bactrial culture, specially the complete dechlorinating enrichment culture such as PE-1 culture, would be practically effective for remediation of PCE contaminated soil.

  • PDF

Diversity of Cultured and Uncultured Bacteria in the Gut of Olive Flounder Paralichthys olivaceus (넙치(Paralichthys olivaceus) 장관의 배양 및 비배양 방법에 의한 세균의 다양성)

  • Kim, Ahran;Kim, Do-Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.447-453
    • /
    • 2015
  • We determined the optimal culture conditions for obtaining the maximum number of intestinal bacteria from the olive flounder Paralichthys olivaceus, and studied bacterial diversity using both culture-dependent and culture-independent methods. Using six culture conditions, mean bacterial numbers were greater than $10^6$ per gram of gut mucus, regardless of the medium. However, the bacterial diversity, based on colony morphology, appeared much higher on Marine agar (MA) and Zobell 2216 agar than on other media. We found eight and 17 cultured bacterial phylotypes with 99% minimum similarity in gut mucus grown on MA and tryptic soy agar, respectively. Furthermore, we used genomic DNA extracted from gut mucus to generate 78 random clones, which were grouped into 25 phylotypes. Of these, six were affiliated with Firmicutes, Actinobacteria, and Verrucomicrobia, and were not found using our culture-dependent methods. Consequently, we believe that Marine agar and Zobell 2216 agar are optimal media for culturing diverse intestinal microbes; we also discovered several novel sequences not previously recognized as part of the gut microbiota of olive flounder.

INTERPRETATION OF BACTERIAL CONTAMINATION OF ALLOGENEIC TISSUES OBTAINED FROM CADAVERIC AND LIVING DONORS (조직은행에서 채취한 동종조직의 세균 배양 평가)

  • Lee, Eun-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Thorough screening of donors medical and social history, extensive serological and bacterial screening combined with developed processing and sterilization methods have improved the safety of the allogeneic tissues in recent decades. The risk of bacterial infection through allogenic tissue transplantation is one of the major problems facing tissue banks. The purpose study is to report the contamination rate in 358 retrieved tissues obtained strictly aseptic conditions, between 2001 and 2002 in Korea Tissue Bank. Samples from 9 donors(total 13 donors) were used in blood culture, and in 7 donors the blood culture were negative. Of the 358 tissues cultured in their entirety, 186(52%) were initially culture negative and 177(48%) were positive. Organism low pathogenicity were cultures from 20.2% of the tissues. To minimize the bacterial load, donors should be obtain in operating rooms, using aseptic techniques with only a few personnel for procurement. The procurement cultures from donors and retrieved tissues with multiple should be carefully interpreted. Blood cultures should be taken account, since these can help to find contamination not detect swab culture. A prospective cohort study is needed to determine which of the varied processing and sterilization methodologies gives the best quality.

Analysis of Microbial Composition Associated with Freshwater and Seawater

  • Lee, So-Yeon;Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.150-159
    • /
    • 2016
  • Knowledge of the distribution and biodiversity of environmental bacteria and the ecosystem that influences them is crucial for predicting an ecosystem. However, bacterial culture methods can only analyze approximately 0.1% of the existing microorganisms, those that are readily cultured under laboratory conditions. By contrast, next-generation sequencing (NGS) has generally been known to obtain more diverse profiling of bacterial composition. We compared the bacterial communities using both a culture-dependent (MALDI-TOF) and culture-independent (NGS) methods. Environmental specimens were obtained from both freshwater and seawater. Water samples were also analyzed by both pyrosequencing and MiSeq sequencing, in order to select one NGS platform which could analyze comparatively more diverse microbiota. Bacterial distribution analyzed with MALDI-TOF showed no difference between the microbiota of freshwater and seawater, whereas the results analyzed with NGS distinguished between the two. The diversity indexes of MiSeq sequencing were higher than for Pyrosequencing. This indicated that MiSeq sequencing is capable of analyzing a comparatively wider diversity of bacteria. The genus of Flavobacterium and Planktophila were identified as being unique to freshwater, whereas EU801223 and OM43 were found in the seawater. Difference between the bacterial composition of the freshwater and seawater environments was identified by MiSeq sequencing analysis.

Silicone Rubber Membrane Bioreactors for Bacterial Cellulose Production

  • Onodera, Masayuki;Harashima, Ikuro;Toda, Kiyoshi;Asakura, Tomoko
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.289-294
    • /
    • 2002
  • Cellulose production by Acetobacter pasteurianus was investigated in static culture using four bioreactors with silicone rubber membrane submerged in the medium. The shape of the membrane was flat sheet, flat sack, tube and cylindrical balloon. Production rate of cellulose as well as its yield on consumed glucose by the bacteria grown on the flat type membranes was approximately ten-fold greater than those on the non-flat ones in spite of the same membrane thickness. The membrane reactor using flat sacks of silicone rubber membrane as support of bacterial pellicle can supply greater ratio of surface to volume than a conventional liquid surface culture and is promising for industrial production of bacterial cellulose in large scale.