• Title/Summary/Keyword: Ball-Seat

Search Result 24, Processing Time 0.028 seconds

Development of the Injection Molded Ball Seat for Automobile Suspension (자동차 서스펜션용 볼 시트 사출성형품 개발)

  • Ye, Sang-Don;Min, Byeong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.50-56
    • /
    • 2011
  • Injection molding process is one of the popular manufacturing methods to produce plastic parts with high efficiency and low cost. Ball seat for automobile suspension is made by an injection molding process as a part to support pivot function of ball joint consisted of ball stud and housing. It is necessary for a ball seat to have a dimensional stability in the three dimensional inner area to be contacted with ball stud. In this paper, the dimensional stability of inner surface is indirectly analyzed by checking the difference of inner diameter around the circumferential direction and the thickness variation at the top part of ball seat. Measurement was performed by using the coordinate measuring machine and the fixture to hold ball seat. Optimization of injection molding processes such as injection time, cooling time and temperatures of cylinder barrel was derived to reduce the difference of inner diameter and the thickness variation at the top part of ball seat based on the Taguchi method.

Wear Characteristics of Metal Ball and Seat for Metal-Seated Ball Valve (금속 볼 밸브의 볼·시트 마멸 특성에 관한 실험적 연구)

  • Bae, Junho;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • The wear characteristics of metal ball and seat in a metal-seated ball valve significantly affect the performances such as leakage and valve torque. In this work, the wear characteristics of metal ball and seat are experimentally investigated. A stainless steel ball and seat with a high corrosion-resistant coating are prepared and a component level test was performed. The hardness and surface roughness of specimens cut from the metal ball and seat are measured before and after the test using a micro-Vickers hardness tester and confocal microscopy, respectively. In order to assess the wear characteristics, the surfaces of the specimens are carefully examined after the test. The confocal microscope data show that the surface roughness values of both the ball and seat increase by a factor of 3-4, which may lead to an increase in valve torque. However, the wear of the seat is found to be more significant than that of the ball. In addition, a comparison of the surfaces of the ball and seat before and after testing revealed that adhesive and abrasive wear are the major wear mechanisms. The results of this study may aid in the design of metal-seated ball valves from the tribological point of view.

QUALITY STABILIZATION OF BALL SEAT IN AUTOMOTIVE SUSPENSION PARTS

  • KANG T.-H.;KIM I.-K.;KIM Y.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.507-511
    • /
    • 2005
  • Recently, many solution have been suggested to development of plastic products. Among many manufacturing technologies for plastic parts, the injection molding process is very attractive because of its low production cost and short cycle time. In this paper, the plastic ball seat of a ball joint, one of the essential components for automotive suspension or steering system, was studied to enhance its mechanical performance and durability by using PA66 that is reinforced polymeric plastic resin. But ball seat has some trouble in manufacture process. And strength of molded part is not enough to use. For the quality stabilization and reliability of injection molded parts, we designed the mold cavities through analytical simulation software and tested the mechanical performance for the injection molded ball-seat parts. After modification, tensile strength increases by about $13.5\%$. Strength and quality stabilization is improved.

Improvement of Seat Comfort by Reducing the Human Vibration (인체진동을 고려한 시트 안락성 향상)

  • 장한기;김승한;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.444-449
    • /
    • 2001
  • The purpose of the work is to improve comfort of a car seat, especially dynamic comfort which affects driver's discomfort during the long time driving. Definition of dynamic comfort was made before the investigation of which parameter affects seat comfort. In order to optimize design parameters so as to maximize seat comfort as well as to know the cause of discomfort, benchmarking on a target vehicle and competitive vehicles was performed, which showed both the vibration transmission characteristics and the compression set due to dynamic loading should be reduced. As a solution ball rebounds was increased by about 10% of the original foam, which showed reduction of S.E.A.T. value by 10% and of compression set by 60%.

  • PDF

A Study for Quality Stabilization of Ball-Seat - II (볼 시트 품질안정화에 관한 연구 - II)

  • 강태호;김영수;정영득;김인관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.346-349
    • /
    • 2001
  • Nowadays the amount of plastic products is increasing in modern industry. Plastic materials are continuously developed to satisfy the mechanical, physical, and chemical properties. The increasing application of plastic parts in automobile and aerospace industries is due to the fact that it can reduce the structural weight and can lessen the environmental contamination. Among many manufacturing technologies for plastic parts, the injection molding process is very attractive because of its low cost and short production time. Through various analyses of resin flow and molding process for the conventional gate and cooling mechanism, a new type of mold was designed which had different gate location and cooling systems. Newly designed ball seat has an excellent performances, i.e. diminished weld-line, residual stress density, higher magnitude less crack propagation and smaller dimensional contractions effect.

  • PDF

A Study on Structural Analysis of High-Pressure Pipeline Retainer-Type Ball Valve by Pressure Testing of the Industrial Standard (산업용 표준의 압력시험 방법에 의한 고압 배관용 리테이너형 볼밸브의 구조해석에 관한 연구)

  • Kim, Chul Kyu;Yoon, Joon Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.13-18
    • /
    • 2015
  • This study has been performed to evaluate the safety of the retainer-type ball valve for a high-pressure pipeline to a district heating plant. The retainer-type ball valve is an improved design for conventional ball valves, such as the floating ball valve and the trunnion ball valve. Numerical analysis of the valve design verification has been applied to investigate the safety factor and seat leakage of the DN300 and DN400 sizes. The given condition to solve the structural analysis was based on the international standard for ISO 5208. In this study, the methods for structural analysis are described in detail. The structural analysis results present the deformations, the equivalent stresses, and the safety factors. Through these results, this study successfully demonstrates the safety and seat leakage of the retainer-type ball valve. They also streamline the process of development for valve manufacturing.

A Study for Quality of Stabilization of Ball-Seat - I (볼시트 품질 안정화에 관한 연구 - I)

  • 김인관;최준영;김대식;정영득;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.350-353
    • /
    • 2001
  • Due to the widen demand of plastic part in automobiles, more accurate numerical simulation works are needed to find optimum molding process like filling fiber orientation pressure control. Therefore, C-mold software was applied for the simulation of injection molding process and cooling process in this research. The purpose of this study is developing a ball seat which made by injection process with PA66 resin and it is applied to the automobile suspension system. It must secure low friction, wear resistance and dimensional accuracy. Specially this study aims to get the quality stabilization of injection molded bass-seat parts.

  • PDF

Polyurethane Flexible Foam for Automotive Seat Cushion Having Both Superior Static and Dynamic Properties (우수한 정적, 동적 특성을 보이는 자동차 시트용 폴리우레탄 발포체)

  • Hong, Chae-Hwan;Back, Han-Sung;Kim, Kyung-Man;Kim, Sung-Yoon;Choi, Sok-Min;Hwang, Tae-Won
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • Polyurethane flexible foams have been widely used for automotive seat cushions because of their excellent performance. It has been required so far to reduce the density of seat cushion foam. However, recently, improving the riding comfort of seat cushions becomes more important. With regard to riding comfort, we investigated the improvement of static properties such as the ball rebound property and the hysteresis loss. We also studied the vibration characteristics, which are well known as an important factor to affect the comfort performance during driving.

Robust Design of an Automobile Ball Joint Considering the Worst-Case Analysis (차량용 볼조인트의 최악 조건을 고려한 강건 설계)

  • Sin, Bong-Su;Kim, Seong-Uk;Kim, Jong-Kyu;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.102-111
    • /
    • 2017
  • An automobile ball joint is the element for connecting the control arm and the knuckle arm, allowing rotational motion. The ball joint consists of the stud, plug, socket, and seat. These components are assembled through the caulking process that consists of plugging and spinning. In the existing research, the pull-out strength and gap stiffness were calculated, but we did not consider the uncertainties due to the numerical analysis and production. In this study, the uncertainties of material property and tolerance are considered to predict the distributions of pull-out strength and gap stiffness. Also, pull-out strength and gap stiffness are predicted as the a distribution rather than one deterministic value. Furthermore, a robust design applying the Taguchi method is suggested.

Optimum Shoulder Height Design using Non-dimensional Shape Variables of Ball Bearing (볼 베어링의 무차원 형상변수를 이용한 최적 턱 높이 설계)

  • Choi, DongChul;Kim, TaeWan
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This paper presents an optimization method to determine the shoulder height of an angular contact ball bearing by 3D contact analysis using nondimensional-shaped variables. The load analysis of the ball bearing is performed to calculate the internal load distributions and contact angles of each rolling element. From the results of bearing load analysis and the contact geometry between the ball and inner/outer raceway, 3D contact analyses using influence function are conducted. The nondimensional shoulder height and nondimensional load are defined to give the generalized results. The relationship between the shoulder height and radius of curvature of the shoulder under various loading conditions is investigated in order to propose a design method for the two design parameters. Using nondimensional parameters, the critical shoulder heights are optimized with loads, contact angles, and conformity ratios. We also develop contour maps of the critical shoulder height as functions of internal loads and contact angles for the different contact angles using nondimensional parameters. The results show that the dimensionless shoulder height increased as the contact angle and dimensionless load increased. Conversely, when the conformity ratio increased, the critical shoulder height decreased. Therefore, if the contact angle is reduced and the conformity ratio is increased within the allowable range, it will be an efficient design to reduce the shoulder height of ball bearings.