• Title/Summary/Keyword: Ballistic Missile Defense System

Search Result 47, Processing Time 0.03 seconds

U.S. Ballistic Missile Defense System and THAAD (미국의 탄도미사일 방어체계와 THAAD)

  • Park, Young-Chul;Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.455-457
    • /
    • 2015
  • Since V-2, the first ballistic missile was developed during world war II, ballistic missile threat is increasing consistently due to science technology progress. United States is constructing and operating BMDS(Ballistic Missile Defense System) to defend homeland and allies. Various Interceptors will try intercept ballistic missile detected by sensors at boost phase, midcourse phase or terminal phase. THAAD(Terminal High Altitude Area Defense) is intercept system that intercept ballistic missile at high altitude of terminal phase. In this paper, concept of U.S. BMDS, and operational and technical characteristics of THAAD is surveyed and described.

  • PDF

The U.S. Navy Aegis Ballistic Missile Defense (미 해군의 이지스 탄도미사일 방어)

  • Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.359-362
    • /
    • 2015
  • The United States is constructing Missile Defense System to defend from elevated ballistic missile threat of Russia, China and North Korea. U.S. MD system is consists of IAMD concept by MDA centralized, and U.S. Navy takes charge detection, tracking and intercepting on the sea. In this paper, it is reported that concept, current state and plan of U.S. Navy Aegis Ballistic Missile Defense.

  • PDF

Homeland Defense Radar-Hawaii(HDR-H) for Anti-Ballistic Missile (하와이 배치 탄도미사일 방어용 레이더)

  • Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.258-259
    • /
    • 2018
  • The United States has deployed and operates a ballistic missile defense system to defend the homeland from ballistic missile attacks launched from direct and potential threats. The Missile Defense Agency has deployed the Aegis BMDs, Sea-based X-band radars(SBX), Ground-Based Interceptors(GBI), Early Warning Radars and THAADs. In addition, the Homeland Defense Radar-Hawaii(HDR-H) will be deployed in Hawaii. The HDR-H is expected to improve defensive ability to ballistic missile threats in the Asia-Pacific region.

  • PDF

The Optimal Deployment Problem of Air Defense Artillery for Missile Defense (미사일 방어를 위한 방공포대 최적 배치 문제)

  • Kim, Jae-Kwon;Seol, Hyeonju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.98-104
    • /
    • 2016
  • With the development of modern science and technology, weapon systems such as tanks, submarines, combat planes, radar are also dramatically advanced. Among these weapon systems, the ballistic missile, one of the asymmetric forces, could be considered as a very economical means to attack the core facilities of the other country in order to achieve the strategic goals of the country during the war. Because of the current ballistic missile threat from the North Korea, establishing a missile defense (MD) system becomes one of the major national defense issues. This study focused on the optimization of air defense artillery units' deployment for effective ballistic missile defense. To optimize the deployment of the units, firstly this study examined the possibility of defense, according to the presence of orbital coordinates of ballistic missiles in the limited defense range of air defense artillery units. This constraint on the defense range is originated from the characteristics of anti-ballistic missiles (ABMs) such as PATRIOT. Secondly, this study proposed the optimized mathematical model considering the total covering problem of binary integer programming, as an optimal deployment of air defense artillery units for defending every core defense facility with the least number of such units. Finally, numerical experiments were conducted to show how the suggested approach works. Assuming the current state of the Korean peninsula, the study arbitrarily set ballistic missile bases of the North Korea and core defense facilities of the South Korea. Under these conditions, numerical experiments were executed by utilizing MATLAB R2010a of the MathWorks, Inc.

A Study on the Optimal Allocation of Korea Air and Missile Defense System using a Genetic Algorithm (유전자 알고리즘을 이용한 한국형 미사일 방어체계 최적 배치에 관한 연구)

  • Yunn, Seunghwan;Kim, Suhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.797-807
    • /
    • 2015
  • The low-altitude PAC-2 Patriot missile system is the backbone of ROK air defense for intercepting enemy aircraft. Currently there is no missile interceptor which can defend against the relatively high velocity ballistic missile from North Korea which may carry nuclear, biological or chemical warheads. For ballistic missile defense, Korea's air defense systems are being evaluated. In attempting to intercept ballistic missiles at high altitude the most effective means is through a multi-layered missile defense system. The missile defense problem has been studied considering a single interception system or any additional capability. In this study, we seek to establish a mathematical model that's available for multi-layered missile defense and minimize total interception fail probability and proposes a solution based on genetic algorithms. We perform computational tests to evaluate the relative speed and solution of our GA algorithm in comparison with the commercial optimization tool GAMS.

Threat Assessment of Anti-Ship Ballistic Missile (ASBM) of North Korea (북한 대함탄도미사일 위협 분석)

  • Park, Younghan;Oh, Kyungwon;Kim, Jiwon
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • This paper provides an empirical assessment of the development of North Korea's Anti-Ship Ballistic Missile (ASBM), and its influence on South Korea's maritime strategy. While research studies on North Korea's ballistic-missile capabilities and South Korea's ballistic-missile defense systems are proliferating, less analytical attention has been given to the way that the strengthening of North Korea's ballistic-missile capacities presents a critical threat to the ROK's navy and lines of communication. The authors of this paper identify the continuing development of unique ASBM capabilities by China and Iran, and determine that such processes are mutually interactive and in accordance with threat perceptions; furthermore, North Korea can enact the same process by learning lessons from these nations. The findings of this paper provide an implication for the formulation of South Korea's maritime strategy and the related assets in consideration of the ASBM as a future threat.

Derivation of Operational Concept for the BMD of the Aegis Ship (이지스함의 탄도미사일 방어를 위한 운용개념 도출)

  • Lee, Kyoung Haing;Baek, Byung Sun
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.44-51
    • /
    • 2016
  • This paper describes the operational concept of the Aegis ship's missile defense. Recently, North Korea conducted a fourth nuclear-weapon test that involved the launch of a long-range missile and the underwater launch of an SLBM. The ground-based BMD (Ballistic Missile Defense) system is very limited for the SLBM of a miniaturized nuclear warhead; therefore, it is necessary to build a reliable sea-based missile-defense system. The ROK Navy has, however, only utilized the Aegis ship that is designed with a search-and-tracking sensor but is without a ballistic-missile interception capability. Given this information, this work focuses on the operational concept of the Aegis BMD by comparing the BMD capabilities of the ROK with those of the U.S.

Ballistic Missile Tracking using Unscented Kalman Filter (Unscented Kalman Filter를 이용한 탄도 미사일 추적)

  • Park, Sang-Hyuk;Yun, Joong-Sup;Ryoo, Chang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.898-903
    • /
    • 2008
  • In most cases, the trajectory of a ballistic missile is well explained by the Kepler's laws. It implies that the remaining trajectory of the ballistic missile including its final destination can be easily predicted if the position and velocity vector of the ballistic missile at any point on its path can be exactly known. Hence, an effective tracking algorithm based on an exact radar measurement model is very important for developing Ballistic Missile Defense(BMD) system. In this paper, we address to design a nonlinear filter, Unscented Kalman Filter(UKF), to track the ballistic missile.

A Study on the Possibility of Airborne Laser Applications to the Korean Missile Defense (ABL의 한국적 미사일방어 적용 가능성 연구)

  • Kwon, Yong-Soo;Park, Eun-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.51-59
    • /
    • 2009
  • This work describes the possibility of ABL(Airborne Laser) applications to the Korean missile defense. The missile defense system is the multilayered defense system that consists of shooters, sensors and BM/C4I. The ABL is the missile defense system of boost phase. It is placing a high energy, megawatt class chemical oxygen iodine laser and highly sophisticated beam control/fire control and battle management systems on a modified Boeing 747-400F aircraft to detect, track and destroy ballistic missiles in their boost phase of flight. This work analysis the ballistic missile's threat of North Korea and the flight trajectory for the SCUD missile that is cut-off by the ABL. From this analysis the possibility of the ABL applications to the Korean missile defense is presented.

Development Status of Arrow Missile Defense System (Arrow 미사일 방어체계 개발 현황)

  • Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.283-284
    • /
    • 2018
  • The Arrow system, an Israeli missile defense system, was developed through a strategic partnership between the United States and Israel. Israel's cooperation with the Strategic Defense Initiative(SDI) research of the Reagan administration in the United States began in 1986 with the development of a tactical ballistic missile defense system and two increasingly improvements to Arrow 3. It could be a moral lessen to developing Korean Ballistic Missile Defense System because Israel's Geopolitical environment is similar to Korean peninsula.

  • PDF