• Title/Summary/Keyword: Bandwidth management scheme

Search Result 130, Processing Time 0.024 seconds

QoS oriented bandwidth management scheme on the ATM based IMT-2000 networks (ATM 기반 IMT-2000망에서 QoS에 기반한 대역폭 관리기법)

  • 조성현;양승제;박성한
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.35-38
    • /
    • 1999
  • In this paper, we propose bandwidth management scheme to efficiently guarantee the QoS of various services on ATM based IMT-2000 networks. The proposed bandwidth management scheme consists of the call admission control to reduce a handoff failure probability and the scheduling scheme to efficiently allocate a time slot based on the QoS requirements in wireless links. The simulation results show that the proposed bandwidth scheme has better performance than the previous works in terms of the handoff failure probability and packet delay time.

  • PDF

Dynamic Bandwidth Management scheme for Interactive Video Service Based on MPEG Video (대화형 비디오 서비스를 위한 MPEG 비디오 기반의 동적 대역폭 관리 기법)

  • Lee, Seung-Yun;Yu, Hwang-Bin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.2
    • /
    • pp.367-376
    • /
    • 1999
  • A variable bit-rate based video services have much limitation for bandwidth management, since its trarfic has a some variances in frame level. In particular, the bandwidth management for video which has characteristics of VBR traffic such a MPEG video could be more complicated. Also, it is difficult to manage the bandwidth effectively for proving a VCR function from VOD service, since we don't know the traffic variance exactly at that time. In this paper, we proposed the dynamic bandwidth allocation a scheme based on VBR traffic based stored video such as MPEG for interactive video service. This scheme can maximize the given total bandwidth through the prefetch based variable length bandwidth allocation scheme and dynamic bandwidth management scheme for multiple streams. Also, our scheme can be used for a MPEG-based bandwidth allocation scheme, and provides the method that can maximize the utilization of network resource for multiple stream by using a dynamic bandwidth management.

  • PDF

Bandwidth Management of WiMAX Systems and Performance Modeling

  • Li, Yue;He, Jian-Hua;Xing, Weixi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.2
    • /
    • pp.63-81
    • /
    • 2008
  • WiMAX has been introduced as a competitive alternative for metropolitan broadband wireless access technologies. It is connection oriented and it can provide very high data rates, large service coverage, and flexible quality of services (QoS). Due to the large number of connections and flexible QoS supported by WiMAX, the uplink access in WiMAX networks is very challenging since the medium access control (MAC) protocol must efficiently manage the bandwidth and related channel allocations. In this paper, we propose and investigate a cost-effective WiMAX bandwidth management scheme, named the WiMAX partial sharing scheme (WPSS), in order to provide good QoS while achieving better bandwidth utilization and network throughput. The proposed bandwidth management scheme is compared with a simple but inefficient scheme, named the WiMAX complete sharing scheme (WCPS). A maximum entropy (ME) based analytical model (MEAM) is proposed for the performance evaluation of the two bandwidth management schemes. The reason for using MEAM for the performance evaluation is that MEAM can efficiently model a large-scale system in which the number of stations or connections is generally very high, while the traditional simulation and analytical (e.g., Markov models) approaches cannot perform well due to the high computation complexity. We model the bandwidth management scheme as a queuing network model (QNM) that consists of interacting multiclass queues for different service classes. Closed form expressions for the state and blocking probability distributions are derived for those schemes. Simulation results verify the MEAM numerical results and show that WPSS can significantly improve the network’s performance compared to WCPS.

Controlled Bandwidth Borrowing with Extended RSVP-TE to Maximize Bandwidth Utilization

  • Kim Chul;Kim Young-Tak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.64-72
    • /
    • 2004
  • Multiprotocol Label Switching (MPLS) has been developed as a key technology to enhance the reliability, manageability and overall quality of service of core If networks with connection-oriented tunnel LSP and traffic engineering such as constraint-based routing, explicit routing, and restoration. In this paper, we propose a control bandwidth borrowing scheme that maximizes the utilization of tunnel LSPs or physical links by an extension to the RSVP-TE label distribution protocol. MPLS-based core switching network and VPN services rely on the establishment of connection-oriented tunneled LSPs that are configured or predefined by network management systems. The mechanism of network management system varies from (i) a relatively static LSP establishment accounting, to (ii) a dynamic QoS routing mechanisms. With the use of hierarchical LSPs, the extra bandwidth that is unused by the trunk (outer) LSPs should be fully allocated to their constituent end-to-end user traffic (inner) LSPs in order to maximize their utilization. In order to find out the unused extra bandwidth in tunnel LSP or physical link and redistribute these resources to constituent LSPs, we expend the functionality of RSVP-TE and the found unused extra bandwidth is redistributed with a weight-based recursive redistribution scheme. By the extended RSVP-TE and proposed recursive redistributed scheme, we could achieve the instantaneous maximized utilization of tunnel LSP or physical link suffering from the potential under-utilization problem and guarantee the end-to-end QoS requirements. With the proposed scheme, network manager can manage more effectively the extra available bandwidth of hierarchical LSPs and maximize the instantaneous utilization of the tunneled LSP resources.

Management and control of fieldbus network traffic by bandwidth allocation scheme (대역폭 할당 기법에 의한 필드버스 네트워크의 트래픽 관리 및 제어)

  • Hong, Seung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.77-88
    • /
    • 1997
  • Fieldbus is the lowest level communication network in factory automation and process control systems. Performance of factory automation and process control systems is directly affected by the data delay induced by network traffic. Data generated from several distributed field devices can be largely divided into three categories: sporadic real-time, periodic real-time and non real-time data. Since these data share one fieldbus network medium, the limited bandwidth of a fieldbus network must be appropriately allocated to the sporadic real-time, periodic real-time and non real-time traffic. This paper introduces a new fieldbus design scheme which allocates the limited bandwidth of fieldbus network to several different kinds of traffic. The design scheme introduced in this study not only satisfies the performance requirements of application systems interconnected into the fieldbus but also fully utilizes the network resources. The design scheme introduced in this study can be applicable to cyclic service protocols operated under single-service discipline. The bandwidth allocation scheme introduced in this study is verified using a discrete-event/continuous-time simulation experiment.

  • PDF

Cellular Network Bandwidth Management Scheme based on Nash Bargaining Solution (멀티미디어 셀룰러 네트워크상에서 내쉬 협상해법을 이용한 대역폭 관리기법)

  • Choi, Yoon-Ho;Kim, Sung-Wook
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.6
    • /
    • pp.415-419
    • /
    • 2010
  • Bandwidth is an extremely valuable and scarce resource in a wireless network. Therefore, efficient bandwidth management is necessary in order to provide high quality service to users with different requirements. In this paper, we propose a bandwidth reservation algorithm based on Nash Bargaining Solution. The proposed algorithm has low complexity and are quite flexible in the different situations of network. Simulation results indicate that the proposed scheme has excellent performance than other existing schemes.

Bandwidth Efficient Key Management for Secure Multicast in Clustered Wireless Networks (클러스터화된 무선 네트워크에서 전송량을 고려한 효율적인 멀티캐스트 키 관리 기법)

  • Shin, Seung-Jae;Hur, Jun-Beom;Lee, Han-Jin;Yoon, Hyun-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.437-455
    • /
    • 2009
  • In the near future, various multicast based services will be provided over clustered wireless networks. To provide multicast services in secure manner, multicast messages are encrypted by using group key which is shared by group members. Therefore, various group key management schemes have been introduced until now. Among them, tree based approach is one of the most representative paradigms in group key management. Traditional tree based approaches effectively reduce rekeying message transmissions of the key distribution center. However, they do not consider the network bandwidth used for transmitting the rekeying messages. In this paper, we firstly present formulas that describe bandwidth consumption of tree based group key management scheme. Based on our formulations, we propose a bandwidth efficient key tree management scheme for clustered wireless networks where membership changes occur frequently. Simulation results show that our scheme effectively reduces the bandwidth consumption used for rekeying compared to existing key tree schemes.

A Bandwidth Allocation Scheme using NBS in a Multiservice Networks (멀티서비스 네트워크에서 NBS를 이용한 대역폭 할당 기법)

  • Park, Jae-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.66-71
    • /
    • 2012
  • In this paper, using the bargaining game theory, we propose a bandwidth management scheme that allocates bandwidth in an efficient and proportionally fair manner between the service classes with different service requirements. Since the traffic input rates of the classes are asymmetric in most of the time, the proposed scheme allocates bandwidth in proportion to the traffic input rates to increase the bandwidth utilization while protecting the quality of service of a class against the excessive traffic input of the other classes. In addition, the proposed method considers the weights of classes so that the bandwidth is allocated differentially among the classes.

Adaptive Online Network Management for QoS Sensitive Multimedia Services (멀티미디어 서비스의 품질 보장을 위한 적응적 자원관리 기법에 대한 연구)

  • Kim, Sung-Wook;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.933-938
    • /
    • 2006
  • Different multimedia services over networks not only require different amounts of bandwidth but also have different Qualify of Service (QoS) requirements. For example, QoS guarantees for higher priority calls is an important issue in multimedia communication networks. In this paper, we develop an adaptive bandwidth management algorithm, which is able to provide QoS guarantees for higher priority calls while accommodating as many heterogeneous multimedia call connections as possible. Our scheme, based on reservation and bandwidth adaptation, manages bandwidth based on real time estimates of current network conditions. Simulation results indicate the superior performance of our scheme providing excellent trade off between contradictory requirements.

A New Class-Based Traffic Queue Management Algorithm in the Internet

  • Zhu, Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.575-596
    • /
    • 2009
  • Facing limited network resources such as bandwidth and processing capability, the Internet will have congestion from time to time. In this paper, we propose a scheme to maximize the total utility offered by the network to the end user during congested times. We believe the only way to achieve our goal is to make the scheme application-aware, that is, to take advantage of the characteristics of the application. To make our scheme scalable, it is designed to be class-based. Traffic from applications with similar characteristics is classified into the same class. We adopted the RED queue management mechanism to adaptively control the traffic belonging to the same class. To achieve the optimal utility, the traffic belonging to different classes should be controlled differently. By adjusting link bandwidth assignments of different classes, the scheme can achieve the goal and adapt to the changes of dynamical incoming traffic. We use the control theoretical approach to analyze our scheme. In this paper, we focus on optimizing the control on two types of traffic flows: TCP and Simple UDP (SUDP, modeling audio or video applications based on UDP). We derive the differential equations to model the dynamics of SUDP traffic flows and drive stability conditions for the system with both SUDP and TCP traffic flows. In our study, we also find analytical results on the TCP traffic stable point are not accurate, so we derived new formulas on the TCP traffic stable point. We verified the proposed scheme with extensive NS2 simulations.