• 제목/요약/키워드: Basalt fiber

검색결과 83건 처리시간 0.025초

현무암 섬유 보강 콘크리트의 물리적 특성에 관한 실험적 연구 (Experimental Study on the Properties of Basalt Fiber Reinforced Concrete)

  • 김경원;한만엽
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.341-348
    • /
    • 1997
  • Fibers have been used to improve the tensile strength or toughness of concrete. Therefore many different kinds of fibers have been developed and tested to reinforcing concrete. Basalt fiber is one of the recently developed materials for this purpose. Basalt fibers have the advantage which is the fiber itself is a same kind of material as concrete. In this study, fiber length change, orientation of fiber, the strength properties of fiber reinforced concrete have been tested. The test result show that as the amount of fiber increases, 1) workability of concrete has been reduced significantly, 2) the length of fiber reduced down to less than 4mm, 3) orientation factors are between 0.248 and 0.350, 4) compressive strength and elastic modulus have been increased significantly, however, the other strength have not increased significantly.

  • PDF

탄소/현무암 섬유강화 하이브리드 복합재료의 성형과 기계적 특성 평가 (Fabrication of Carbon/Basalt Hybrid Composites and Evaluation of Mechanical Properties)

  • 이진우;김윤해;정민교;윤성원;박준무
    • Composites Research
    • /
    • 제27권1호
    • /
    • pp.14-18
    • /
    • 2014
  • 탄소섬유 복합재료는 내열성 및 우수한 기계적 특성을 가지고 있는 우수한 재료이지만 가격이 비싼 결점이 있다. 따라서 본 연구에서는 높은 기계적 강도를 가지며, 가격이 비싸지 않은 재료의 개발을 위해 탄소섬유에 현무암 섬유를 첨가하여 하이브리드 복합재료를 제작하였다. 현무암 섬유의 함유 비율이 높아질수록 강도는 감소하였으며, 탄소의 강화재 비율이 80% 정도에서 CFRP와 유사한 강도를 얻을 수 있었다. 또한 섬유 각각을 적층하여 복합재료를 제작하는 것 보다 섬유사를 혼합시켜 제작한 복합재료에서 더 우수한 기계적 특성을 얻을 수 있었다.

Shear strengthening of RC beams with Basalt Fiber Reinforced Polymer (BFRP) composites

  • Kar, S.;Biswal, K.C.
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.93-104
    • /
    • 2020
  • Basalt fiber is an eco-friendly fiber and comparatively newer to the world of fiber-reinforced polymer (FRP) composites. A limited number of studies have been reported in the literature on the strengthening of reinforced concrete (RC) beams with basalt fiber reinforced polymer (BFRP). The present experimental work explores the feasibility of using the BFRP strips for shear strengthening of the RC beams. The strengthening schemes include full wrap and U-wrap. A simple mechanical anchorage scheme has been introduced to prevent the debonding of U-wrap as well as to utilize the full capacity of the BFRP composite. The effect of varying shear span-to-effective depth (a/d) ratio on the behavior of shear deficient RC beams strengthened with BFRP strips under different schemes is examined. The RC beams were tested under a four-point loading system. The study finds that the beams strengthened with and without BFRP strips fails in shear for a/d ratio 2.5 and the enhancement of the shear capacity of strengthened beams ranges from 5% to 20%. However, the strengthened beams fail in flexure, and the control beam fails in shear for a higher a/d ratio, i.e., 3.5. The experimental results of the present study have been compared with the analytical study and found that the latter gives conservative results.

국내산 현무암과 맥반석으로부터 무기질 연속섬유 제조와 그 특성 (Preparation and Characterization of Inorganic Continuous Fibers from Korean Basalt and Quartz Diorite Porphyry)

  • 김재근;배지수;나상문;김승일;진용준
    • Composites Research
    • /
    • 제19권6호
    • /
    • pp.32-37
    • /
    • 2006
  • 본 논문은 두 가지 암석인 국내 광물로부터 무기질 연속섬유 제조과정을 요약한 것이다. 두 가지 광물인 현무암과 맥반석으로부터 용융 방법으로 연속섬유를 생산하였다. 제조방법은 유리화된 재료를 노즐이 하나인 백금과 로듐 합금 도가니인 부싱에 넣어 섬유방사가 가능한 온도로 가열하였다. 유리화된 현무암은 어떤 첨가물도 없이 연속섬유 제작에 적합하였으나 맥반석은 산화붕소의 첨가가 연속섬유 방사를 가능하도록 하였다.

Intra-ply, inter-ply and FG hybrid composites based on basalt and poly-ester fibers: Flexural and impact properties

  • Ehsan Fadayee Fard;Hassan Sharifi;Majid Tehrani;Ehsan Akbari
    • Advances in materials Research
    • /
    • 제12권1호
    • /
    • pp.67-81
    • /
    • 2023
  • Basalt and poly-ester fibers along with epoxy resin were used to produce inter-ply, intra-ply and functionally gradient hybrid composites. In all of the composites, the relative content of basalt fiber to poly-ester fiber was equal to 50 percent. The flexural and charpy impact properties of the hybrid composites are presented with particular regard to the effects of the hybrid types, stacking sequence of the plies, loading direction and loading speed. The results show that with properly choosing the composition and the stacking sequence of the plies; the inter-ply hybrid composites can achieve better flexural strength and impact absorption energy compared to the intra-ply and functionally gradient composites. The flexural strength and impact absorption energy of the functionally gradient hybrid composites is comparable to, or higher than the intra-ply sample. Also, by increasing the loading speed, the flexural strength increases while the flexural modulus does not have any special trend.

현무암 재봉사의 연속식 테프론 코팅 공정 (Continuous PTFE Coating Process on Basalt Sewing Thread)

  • 이수
    • 한국응용과학기술학회지
    • /
    • 제31권2호
    • /
    • pp.183-189
    • /
    • 2014
  • 내화성 및 내화학성이 우수한 현무암사의 표면에 회분식 방법에 의한 테프론 코팅 연구의 결과를 토대로 연속식 코팅 공정 인자를 도출하기 위한 연구를 수행하였다. 현무암사를 7,5 wt% 트리에톡시트리플루오로실란(TMTFPS)으로 연속적으로 전처리 한 후, 침투제로 0.25 wt% bis(2-ethylhexyl)sulfo succinate (DOS-Na)가 함유된 20 wt% 테프론 수분산액으로 딥 코팅한 후 2 m의 $120^{\circ}C$ 건조 챔버에서 12 m/mim의 속도로 건조한 후 2 m의 $380^{\circ}C$ 소성 챔버에서 40초간 소성하여 최종 $3.4g_f/D$의 인장 강도와 $2.3g_f/D$의 루프강도를 가지는 테프론이 코팅된 고내열 재봉사용 현무암사를 제조하였다.

현무암의 용융특성과 연속섬유 방사 연구 (Studies on the Melting Characterization of Basalt and its Continuous Fiber Spinning)

  • 박혜정;박선민;이재원;노광철;김재근
    • Composites Research
    • /
    • 제23권3호
    • /
    • pp.43-49
    • /
    • 2010
  • 제주도 표선리 현무암 원광을 이용하여 연속 방사에 의해 현무암 섬유를 제조하였다. 먼저 현무암의 용융특성을 확인하기 위하여 현무암 원광을 백금도가니에 넣고 $1550^{\circ}C$로 용융시킨 후, 물속에서 급냉하였다. 냉각한 후 X-선 회절, 열팽창, 고온 점도, 고온 전기전도도와 고온 현미경을 측정 분석하여 연속방사 조건을 조사하였다. 연속 섬유를 제조하기 위한 최적의 방사 온도와 고온 점도는 각각 $1264^{\circ}C$$10^{2.8}$ poise이었다. 제조된 방사 섬유의 특성은 인장강도, 전자현미경 관찰, 내열시험 등으로 확인하였다. 부싱 온도 $1240^{\circ}C$와 와인더 속도 4600rpm의 방사 조건에서 제조된 섬유의 인장 강도는 3660MPa을 나타내었다.

마이크로 파를 이용한 현무암 용융과 섬유 제조 (Microwave Melting of the Basalt Rock and Fiber Spinning)

  • 허유;김형진;양희원;전경진
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.78-85
    • /
    • 2009
  • High performance functional fibers are demanded increasingly in the modern industries, while the inorganic fibers such as carbon fibers, glass fibers, and metal fibers are representative among them in that they have high strength, consistent properties in a broad temperature change, etc.. This paper reports on the experimental trial to apply the microwave furnace on melting the natural basalt rock that spreads overall on the global surface and is supposed to be used as the raw material for the inorganic high performance fiber. Results showed that the new method to use the microwave as the heating source to melt the basalt rock was feasible. The crucible spinning could effectively applied for producing the basalt fibers up to 10 micrometer diameter, when the crushed basalt rocks were used. For drawing the molten basalt the drawing roller surface feature was a very important factor.

Effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites

  • Lim, Jae Il;Rhee, Kyong Yop;Kim, Hyun Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.125-128
    • /
    • 2014
  • In this study, the effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites was investigated. Two types of carbon/basalt/epoxy hybrid composites with a sandwich form were fabricated: basalt skin-carbon core (BSCC) composites and carbon skin-basalt core (CSBC) composites. Fracture tests were conducted and the fracture surfaces of the carbon/basalt/epoxy hybrid composites were then examined using scanning electron microscopy (SEM). The results showed that the flexural strength and flexural modulus of the CSBC specimen respectively were ~32% and ~245% greater than those of the BSCC specimen. However, the interlaminar fracture toughness of the CSBC specimen was ~10% smaller than that of the BSCC specimen. SEM results on the fracture surface showed that matrix cracking is a dominant fracture mechanism for the CSBC specimen while interfacial debonding between fibers and epoxy resin is a dominant fracture process for the BSCC specimen.

Influence of basalt fibres on the flexural performance of hypo sludge reinforced concrete beams with SBR latex

  • S. Srividhya;R. Vidjeapriya
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.615-624
    • /
    • 2023
  • The focus of this study is on the structural behaviour of reinforced concrete beams in which basalt fiber and SBR latex were added and the cement was partially replaced with 10% of hypo sludge. Eight different mixes of reinforced beam specimens were tested under static loading behaviour. The experiments showed, the structural behaviour with features such as load-deflection relationships, crack pattern, crack propagation, number of crack, crack spacing and moment curvature. A stress-strain relationship to represent the overall behavior of reinforced concrete in tension, which includes the combined effects of cracking and mode of failure along the reinforcement, is proposed. The structural behaviour results of reinforced concrete beams with various types of mix were tested at the age of 28 days. The investigation revealed that the flexural behaviors of hypo sludge reinforced concrete beams with addition of basalt fiber and SBR latex was higher than that of control concrete reinforced beam. The specimen (LHSBFC) with 10% hypo sludge, 0.25% Basalt fiber and 10% SBR latex showed an increase of 5.08% load carrying capacity, 7.6% stiffness, 3.97% ductility, 31.29% energy dissipation when compared to the control concrete beam. The analytical investigation using FEM shows that it was in good agreement with the experimental investigation.