• Title/Summary/Keyword: Basic fibroblast growth factor

Search Result 107, Processing Time 0.033 seconds

The Effect of the Basic Fibroblast Growth Factor on Proliferation Rate of the Human Periodontal Ligament Cells and Human Gingival Fibroblasts (치주인대세포 및 치은섬유아세포의 DNA 합성능에 대한 b-Fibroblast growth factor의 영향)

  • Cho, Young-Joon;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.414-428
    • /
    • 1996
  • The use of basic fibroblast growth factor which function as potent biologic mediators regulating numerous activities of wound healing has been suggested for the promotion of periodontal regeneration. The mitogenic effects of basic fibroblast growth factor on human periodontal ligament cells and human gingival fibroblasts were evaluated by determining the incorporation of 5-Bromo-2'deoxy-uridine into DNA of the cells in a dose -dependent manner. The cells which were prepared were the primary cultured gingival fibroblasts and periodontal ligament cells from human the fourth or sixth subpassages were used in the experiments. The cells which were seeded DMEM contain 10% FBS. The added concentrations of basic fibroblast growth factor were 0.1, 1, 10, 50, $l00{\eta}g/ml$ and basic fibroblast growth factor were added to the quiescent cells for 24 hours, 48 hours and 72 hours. They were labeled with $10{\mu}l/200{\mu}l$ 5Bromo-2'-deoxy-uridine for the last 6 hours of each culture. The results of the five determinants were presented as mean and S.D.. The results were as follows. : The DNA synthetic activity of human gingival fibroblasts was increased dose dependently by basic fibroblast growth factor at 24 hours, 48 hours and 72 hours. The similar mitogenic effects were at the 24 and 48 hours of basic fibroblast growth factor, but the DNA synthetic activity of human gingival fibroblasts generally decreased at 72 hours. The DNA synthetic activity of human periodontal ligament cells was increased dose dependently to $50{\eta}g/ml$ by basic fibroblast growth factor at 24, 48 and 72 hours, but the DNA synthetic activity decreased at $l00{\eta}g/ml$ of each hour. Generally the maximum mitogenic effects were at the 48 hours application of basic fibroblast growth factor. The DNA synthetic activity of human periodontal ligament cells generally decreased lower at 72 hours than at 24, 48 hours the application of basic fibroblast growth factor. In the comparison of DNA synthetic activity between human gingival fibroblasts and human periodontal ligament cells, human periodontal ligament cells had slightly higher proliferation activity than human gingival fibroblasts for a longer time at the high dosage of the basic fibroblast growth factor.In conclusion, basic fibroblast growth factor have important roles in the stimulation of DNA synthesis in human periodontal ligament cells and human gingival fibroblasts, and thus may be useful for clinical applications in periodontal regenerative procedures.

  • PDF

Basic Fibroblast Growth Factor(bFGF) Inhibits Radiation-induced Apoptosis on Human Umbilical Vein Endothelial Cells(HUVECs) (18) 방사선에 의한 제대 혈관내피세포의 apoptosis와 Basic Fibroblast Growth Factor의 억제 효과)

  • Lee Song Jae;Chang Jae Chul
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.25 no.1
    • /
    • pp.317-323
    • /
    • 1999
  • The response of endothelial cells to ionizing radiation is thought to be an important factor in the overall response of normal tissue. It has been reported that basic fibroblast growth factor (bFGF), a potent mitogen for endothelial cells, protects endoth

  • PDF

Pituitary Tumor-Transforming Gene (PTTG) Induces both Vascular Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth Factor (bFGF)

  • Cho, Sa-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1823-1825
    • /
    • 2005
  • Angiogenesis is tightly regulated by a variety of angiogenic activators and inhibitors. Disruption of the balanced angiogenesis leads to the progress of diseases such as cancer, rheumatoid arthritis, and diabetic blindness. Even though a number of proteins involved in angiogenesis have been identified so far, more protein factors remain to be identified due to complexity of the process. Here I report that pituitary tumor-transforming gene (PTTG) induces migration and tube formation of human umbilical vein endothelial cells (HUVECs). High levels of both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are detected in conditioned medium obtained from cells transfected with PTTG expression plasmid. Taken together, these results suggest that PTTG is an angiogenic factor that induces production of both VEGF and bFGF.

Visible light-cured glycol chitosan hydrogel dressing containing endothelial growth factor and basic fibroblast growth factor accelerates wound healing in vivo

  • Yoo, Youngbum;Hyun, Hoon;Yoon, Sun-Jung;Kim, So Yeon;Lee, Deok-Won;Um, Sewook;Hong, Sung Ok;Yang, Dae Hyeok
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.365-372
    • /
    • 2018
  • Wounds that heal with excessive scar formation result in poor functional and aesthetic outcomes. To address this, in our study, visible light cured glycol chitosan (GCH) hydrogels containing endothelial growth factor (EGF) and basic fibroblast growth factor (bFGF) were prepared (GCH-EGF, GCH-FGF and GCH-EGF/FGF) and evaluated their efficacies on the improvement of wound healing in vivo. In vitro release test showed that the growth factors were released in a sustained manner along with initial burst for 24 h. In vitro cell proliferation assay of L-929 mouse fibroblast cell line resulted in the superior ability of GCH-EGF/FGF on the rate. In vivo results demonstrated that the growth factor loaded GCHs further enhanced wound healing compared with GCH. In particular, GCH-EGF/EFG showed the most remarkable wound healing effect among the samples.

A Case of Surgical Treatment of Intractable Vocal Fold Scar Using Basic Fibroblast Growth Factor and Collagen Scaffold (기본섬유아세포 성장인자와 콜라겐 골격으로 치료한 난치성 성대 반흔 1예)

  • Kang, Hyun Tag;Kim, Hyo Jun;Park, Ki Nam;Lee, Seung Won
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.30 no.2
    • /
    • pp.124-127
    • /
    • 2019
  • Vocal fold scarring is an intractable phonosurgical condition. The number of patients with vocal fold scars is increasing with the aging of society and with the increasing application of laryngeal microsurgery. Many methods are available to treat these, including voice therapy, stem cells, regenerative scaffolds, and growth factors. However, no standard treatment strategy has yet been established, and novel techniques are required. Basic fibroblast growth factor has been shown to be effective for the treatment of mild chronic vocal fold scarring. The combined use of basic fibroblast growth factor and regenerative scaffolds is currently under investigation. Here, we report a female patient in whom vocal fold scarring developed after two laryngeal microsurgeries. We performed laryngeal microsurgery to remove the scar tissue and used basic fibroblast growth factor and a collagen scaffold to promote healing. The patient's voice quality was greatly increased, and she was content with her voice after 2 years of follow-up. This is the first report of this methodology in Korea and is presented along with a review of the literature.

Trend of Basic Research for Vocal Fold Scar (성대 반흔에 대한 기초연구의 최신 경향)

  • Lee, Byung-Joo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.23 no.1
    • /
    • pp.28-32
    • /
    • 2012
  • Vocal fold scar disrupts structure of lamina propria and causes significant change in vocal fold tissue biomechanics, resulting in a range of voice problems that often significantly compromise patient quality of life. Although several therapeutic management have been offered in an attempt to improve vocal fold scar, the ideal treatment has not yet been found. Recently, several tissue engineering technique for vocal fold scar using growth factors, several cells, and scaffolds have been described in tissue culture and animal models. Several growth factors such as hepatocyte growth factor, basic fibroblast growth factor, and transforming growth factor beta 3 for therapy and prevention of vocal fold scar have been studied. Cell types to regenerate vocal folds in scarring tissue have been introduced autologous or scarred vocal fold fibroblast and adult mesenchymal stem cells. Decellularized organ matrix and several hyaluronic acid materials have used as scaffolds for vocal fold scar.

  • PDF

The Effect of Basic Fibroblast Growth Factor in Acellular Human Dermal Grafts in Rats (흰쥐에 시행한 무세포 인체 진피 이식에서의 Basic Fibroblast Growth Factor의 효과)

  • Lee, Hun-Joo;Kim, Yang-Woo;Cheon, Young-Woo
    • Archives of Plastic Surgery
    • /
    • v.38 no.5
    • /
    • pp.567-575
    • /
    • 2011
  • Purpose: Acellular human dermis is very useful implant for use in plastic and reconstructive surgery. However, the volume of acellular human dermis graft is known to decrease for a long time. Basic fibroblast growth factor (bFGF) is a polypeptide that enhances the collagen synthesis and angiogenesis. In the current study we examined whether bFGF could improve the survival of acellular human dermis ($SureDerm^{(R)}$) by increasing angiogenesis of the graft. Methods: Forty rats were divided into two groups (control and bFGF). A 2-mm thick piece of $SureDerm^{(R)}$ was cut into smaller pieces that were $15{\times}5$ mm in size. Two subcutaneous pockets were made on the back of each rat. Grafts sprayed with bFGF were implanted in the bFGF group and injected with bFGF after transplantation every 3 days for 2 weeks. In the control group, the grafts were treated with phosphate-buffered saline (PBS) instead of bFGF. Four days, and 1, 4, and 12 weeks after the implantation, the grafts were harvested and gross and histologic examinations were performed. Inflammation grade, graft thickness, neocollagen density, and neocapillary count were measured. Results: The bFGF group displayed more rapid accumulation of inflammatory cells with a higher density of neocapillaries, and increased active collagen synthesis. After 12 weeks, the thickness of the grafts in the control and bFGF groups was $75.15{\pm}4.80%$ and $81.79{\pm}5.72%$, respectively, in comparison to the thickness before transplantation. There was a statistically significant difference between both groups ($p$ <0.05). Conclusion: bFGF was effective in reducing the absorption of acellular human dermal grafts by increasing angiogenesis and accelerating engraftment. In conclusion, bFGF may be a good tool for use in acellular human dermal graft transplantation for reconstructive surgery involving soft-tissue defects.

The Effect of Interferon-${\alpha}$ and bFGF on the Proliferation of Cultured Leiomyoma and Myometrial Cells (자궁근종과 자궁평활근 세포분열에 있어 Interferon-${\alpha}$ 및 basic Fibroblast Growth Factor (bFGF)의 효과)

  • Lee, B.S.;Park, J.S.;Kim, J.Y.;Bae, S.W.;Park, K.H.;Cho, D.J.;Lee, K.d;Kim, J.W.;Song, C.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.3
    • /
    • pp.355-359
    • /
    • 1997
  • Leiomyomas, which are the commonest pelvic tumors in women, are originated from myometrial cells. Although the exact initial pathophysiologic event of the leiomyoma is not known, recent evidences suggested that the effects of sex steroid hormones in the process of tumor growth are mediated by local production of growth factors including epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF-II). If we look at the effects of other cytokines, it was suggested that basic fibroblast growth factor (bFGF) may stimulate the proliferation of myometrial and leiomyomas cells. And it was reported that interferon-${\alpha}$ inhibit the action of bFGF. Therefore, we examined the effect of bFGF and interferon-${\alpha}$ on the proliferation of leiomyoma and myometrial cells. bFGF stimulated the myometrial and leiomyoma cells significantly at the concentration of 1ng/ml (p<0.05) and 5ng/ml (p<0.05). However, Interferon-${\alpha}$ inhibited the cell proliferation of myometrial and leiomyoma cells significantly at the concentration of 100U/ml (p<0.05) and 1000U/ml (p<0.05). And the stimulated effects of bFGF with the various concentration on the myometrial and leiomyoma cells ware inhibited by interferon-${\alpha}$ with 100U/ml. Therefore, we concluded that bFGF may stimulate the myometrial and leiomyoma cell proliferation and interferon-${\alpha}$ may inhibit the myometrial and leiomyoma cell proliferation through blocking the effect of basic fibroblast growth factor.

  • PDF