• Title/Summary/Keyword: Basic plan for long-term electricity supply and demand

Search Result 25, Processing Time 0.033 seconds

The Analysis of Effect in Order to Consider Combined Heat and Power Capacity in the Basic Plan of Long Term Electricity Supply & Demand (전력수급기본계획에 열병합발전 설비 반영시의 효과분석에 관한 연구)

  • Kim, Yong-Ba;Moon, Jung-Ho;Yeon, Jun-Hee;Jung, Hyun-Sung;Woo, Sung-Min;Kim, Mi-Ye
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.22-31
    • /
    • 2007
  • This paper addresses methodology in order to consider CHP (Combined Heat and Power) capacity in the Basic Plan of Long Term Electricity Supply & Demand and presents effects on it. The method performs state in extent that do not change maximum in the Basic Plan of Long Term Electricity Supply & Demand. For analysis that occurs some advantage this method compares with Basic Plan of Long Term Electricity Supply & Demand. It includes EES (Expected Energy Served), Fuel consumption, amount of $CO_{2}$ emission reduction.

A Study on the Assessment of Reasonable Reserve Margin in Basic Plan of Electricity Supply and Demand (전력수급기본계획의 적정 설비예비율 산정 개선방안)

  • Kim, C.S.;Rhee, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.418-419
    • /
    • 2006
  • After electricity power industry restructuring, "Long term power development plan", setting up by government, is replaced by "Basic plan of electricity supply and demand". In this basic plan, one of the most important factors is assessment of appropriate capacity margin. The benefit of GENCO is decided by the market price, and the price is largely affected by the level of reserve margin. As a consequence, appropriate reserve margin is determined by market power. However, Cost Based Pool(CBP) is a limited competitive market, and government policy for supply and demand is very important factor or reserve margin determination. This paper points out issues about existing reserve margin assessment method which is used in basic plan and suggests improved assessment method. In the case study, capacity margin is calculated by proposed assessment method and result shows the advantages of suggested method.

  • PDF

Energy Transition Policy and Social Costs of Power Generation in South Korea (에너지 전환정책과 발전의 사회적 비용 -제7차와 제8차 전력수급기본계획 비교-)

  • Kim, Kwang In;Kim, Hyunsook;Cho, In-Koo
    • Environmental and Resource Economics Review
    • /
    • v.28 no.1
    • /
    • pp.147-176
    • /
    • 2019
  • This paper uses research on the Levelized Cost of Electricity (LCOE) in South Korea to conduct a simulation analysis on the impact of nuclear power dependency and usage rates on the social costs of power generation. We compare the $7^{th}$ basic plan for long-term electricity supply and demand, which was designed to increase nuclear power generation, to the $8^{th}$ basic plan for long-term electricity supply and demand that decreased nuclear power generation and increased renewable energy generation in order to estimate changes in social costs and electricity rates according to the power generation mix. Our environmental generation mix simulation results indicate that social costs may increase by 22% within 10 years while direct generation cost and electricity rates based on generation and other production costs may increase by as much as 22% and 18%, respectively. Thus we confirm that the power generation mix from the $8^{th}$ basic plan for long-term electricity supply and demand compared to the $7^{th}$ plan increases social costs of generation, which include environmental external costs.

Analysis of Power Supply Cost According to Nuclear and Renewable Energy Policies (원전 및 신재생에너지 정책에 따른 전력공급비용 분석)

  • Woo, Pil Sung;Kim, Kang-won;Hwang, Soon-hyun;Kim, Balho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.16-21
    • /
    • 2018
  • As a result of the Fukushima disaster and climate change due to excessive greenhouse gases, international energy affairs are currently focused on establishing safe and environment-friendly policies. To achieve this, Republic of Korea has established a plan for environment-friendly energy supplies. It is expected that policy enforcement will be accompanied by an increase in energy supply costs. An analysis of energy supply costs is necessary before the establishment of any national energy policy. This paper analyzes and compares the energy supply costs accompanying environmental and nuclear energy policies, based on the Korean National Energy Master Plan and the Basic Plan for Long-Term Electricity Supply and Demand, in order to understand the implications of these national energy policies.

A Study of Economic Efficiency and Environmental Performance Due to the Conversion of the 7th and 8th Basic Plan for Long-term Power Supply and Demand (제7차 및 제8차 전력수급기본계획 전원 구성 전환에 따른 경제성 및 환경성 변화 분석 연구)

  • Cho, Sungjin;Yoon, Teayeon;Kim, Yoon Kyung
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.201-229
    • /
    • 2019
  • This paper estimates the effects of generation mix changes in the $7^{th}$ and $8^{th}$ Basic Plan for Long-term Power Supply and Demand from two aspects: economic efficiency through electricity prices and environmental performance through $CO_2$ and air pollutants(NOx, SOx, PM) emissions. Particularly, we examined additional generation mix conversion paths that take into account the trade-off between economic efficiency and environmental performance through scenario analysis. According to our results, the conversion from the $7^{th}$ plan to the $8^{th}$ plan should increase the electricity prices in the mid- and long-term, while reducing GHG and air pollutants emissions at the same time. The alternative generation mix that combines $7^{th}$ and $8^{th}$ plans shows that there exists a path to mitigate the trade-off between economic and environmental in the long-term. It will be next to impossible to derive a optimal generation mix that simultaneously considers the core values, such as supply stability, environmental performance, economic efficiency, energy safety and energy security, when establishing the power supply and demand plan. However, by exploring the effects of various generation mix paths and suggesting near-optimal paths, people can best choose their direction after weighhing all the paths when deciding on a forward-looking generation mix in the long term.

A Estimation Method for Ratio of Generator Composition included Combined Heat and Power Using Screening Curve Method (열병합발전이 고려된 심사곡선법에 의한 전원구성 비율 산정방법의 연구)

  • Kim, Yong-Ha;Lee, Buhm;Choi, Sang-Kyu;Kim, Mi-Ye;Yeon, Jun-Hee;Kim, Myung-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.736-738
    • /
    • 2005
  • For calculating optimal generation composition of The Basic Plan of Long Term Electricity Supply & Demand, the Screening Curve Method that using generation cost for planning is needed. This paper will induce optimal power system ratio included Combined Head and Power and suggest the method for optimal generation composition of The Basic Plan of Long Term Electricity Supply & Demand that considered policy side.

  • PDF

Portfolio Analysis on the New Power Generation Sources of the Sixth Basic Plan for Long Term Electricity Demand and Supply (포트폴리오 이론을 활용한 제6차 전력수급기본계획의 신규전원구성 비교 연구)

  • Kim, Juhan;Kim, Jinsoo
    • Environmental and Resource Economics Review
    • /
    • v.23 no.4
    • /
    • pp.583-615
    • /
    • 2014
  • Including the rolling black out in 2011, Korea has suffered from rapid increase of electricity consumption and demand forecasting failure for last five years. In addition, because of the Fukushima disaster, high fuel prices, and introduction of new generation sources such as renewables, the uncertainty on a power supply strategy increases. Consequently, a stable power supply becomes the new agenda and a revisino of strategy for new power generation sources is needed. In the light of this, we appraises the sixth basic plan for long term electricity demand and supply considering the changes of foreign and domestic conditions. We also simulate a strategy for the new power generation sources using a portfolio analysis method. As results, a diversity of power generation sources will increase and the share of renewable power generation will be surged on the assumptions of a cost reduction of renewable power sources and an increase of fuel costs. Particularly, on the range of a risk level(standard deviation) from 0.06 and 0.09, the efficient frontier has the most various power sources. Besides, the existing power plan is not efficient so that an improvement is needed. Lastly, the development of an electricity storage system and energy management system is necessary to make a stable and efficient power supply condition.

A Study on the Evaluation of the ESS Capacity of Considering for Charge-Discharge Characteristic and CO2 Emission in Jeju (배터리 충방전특성을 고려한 제주계통의 적정 ESS용량과 탄소배출량 산정에 관한 연구)

  • Ku, Bon-Hui;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • South Korea's power consumption is increasing every year. For stable electric power supply, more generation facilities are needed. But it is not easy to build nuclear power generation facilities, so provision of renewable energy is thought of as the solution. For the system's stable management, practical use of energy storing system is needed. Currently, pumping up electric power station is considered most useful. In this study, we have calculated the least amount of energy storing device by considering the renewable energy, HVDC, and change in power for the appliance of ESS in Jeju system, according to The 6th Basic Plan for Long-term Electricity Supply and Demand. Also we have calculated the amount of the battery and about the load equalizing effect to use battery as power storing device. Finally, we have calculated the reduction of electricity generation and the reduction of $CO_2$ emission with this study.

Assessment of Transmission Losses with The 7th Basic Plan of Long-term Electricity Supply and Demand (7차 전력수급계획에 따른 송전계통 손실 분석에 관한 연구)

  • Kim, Sung-Yul;Lee, Yeo-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.112-118
    • /
    • 2018
  • In recent years, decentralized power have been increasing due to environmental problems, liberalization of electricity markets and technological developments. These changes have led to the evolution of power generation, transmission, and distribution into discrete sectors and the division of integrated power systems. Therefore, studies are underway to efficiently supply power and reduce losses to each sector's demand. This is a major concern for system planners and operators, as it accounts for a relatively high proportion of total power, with a transmission and distribution loss of 4-6%. Therefore, this paper analyzes the status of loss management based on the current transmission and distribution loss rate of each country and transmission loss management cases of each national power company, and proposes a loss rate prediction algorithm according to the long-term transmission system plan. The proposed algorithm predicts the demand-based long-term evolution and the loss rate of the grid to which the transmission plan is applied.

The Effect of the Demand Forecast on the Energy Mix in the National Electricity Supply and Demand Planning (전력수급계획 수립시 수요예측이 전원혼합에 미치는 영향)

  • Kang, Kyoung-Uk;Ko, Bong-Jin;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.114-124
    • /
    • 2009
  • The Ministry of Knowledge and Economy (MKE) establishes the Basic Plan for Long-Term Electricity Supply and Demand(BPE) biannually, a governmental plan for the stable electricity supply. This study investigated the effects of the electric demand forecast on the energy mix. A simplified simulation model was developed, which replaces the WASP program developed by the KPX and verified by comparing both results. Three different electric demand scenarios were devised based upon the 2005 electric demand forecast: Proper, 5 % higher, and 5% lower. The simplified model calculates the energy mix for each scenario of the year 2005. Then it calculates the energy mix for the proper electric demand forecast of the year 2007 using the energy mixes of the three scenarios as the initial conditions, so that it reveals the effect of electric demand forecast of the previous BPE on the energy mix of the next BPE. As the proper electric demand forecasts of the year 2005 and 2007 are the same, there is no change in the previous and the next BPEs. However when the electric demand forecasts were 5% higher in the previous BPE and proper in the next BPE, some of the planned power plant construction in the previous BPE had to be canceled. Similarly, when the electric demand forecasts were 5% lower in the previous BPE and proper in the next BPE, power plant construction should be urgently increased to meet the increased electric demand. As expected the LNG power plants were affected as their construction periods are shorter than coal fired or nuclear power plants. This study concludes that the electric demand forecast is very important and that it has the risk of long term energy mix.