Forecasting the Growth of Smartphone Market in Mongolia Using Bass Diffusion Model (Bass Diffusion 모델을 활용한 스마트폰 시장의 성장 규모 예측: 몽골 사례)
-
- The Journal of Bigdata
- /
- v.7 no.1
- /
- pp.193-212
- /
- 2022
The Bass Diffusion Model is one of the most successful models in marketing research, and management science in general. Since its publication in 1969, it has guided marketing research on diffusion. This paper illustrates the usage of the Bass diffusion model, using mobile cellular subscription diffusion as a context. We fit the bass diffusion model to three large developed markets, South Korea, Japan, and China, and the emerging markets of Vietnam, Thailand, Kazakhstan, and Mongolia. We estimate the parameters of the bass diffusion model using the nonlinear least square method. The diffusion of mobile cellular subscriptions does follow an S-curve in every case. After acquiring m, p, and q parameters we use k-Means Cluster Analysis for grouping countries into three groups. By clustering countries, we suggest that diffusion rates and patterns are similar, where countries with emerging markets can follow in the footsteps of countries with developed markets. The purpose was to predict the timing and the magnitude of the market maturity and to determine whether the data follow the typical diffusion curve of innovations from the Bass model.
Bass diffusion model have played a central role in studying the diffusion of the new products since 1969, the year of publication of Bass model. Almost 750 publications based on the Bass diffusion model have explored extensions and applications. Extension models can be divided into two types. One is the model containing marketing-mix variables and the other is the model containing additional parameters. This paper presents another extension model of the latter type. Our model allows the time varying coefficients of innovation and imitation. Two pieces approximation of time varying coefficients is introduced and it's parameters are estimated based on NLS(Non-Linear Mean Square) method. Empirical studies are performed and the results show that our model is superior to the basic Bass model and the NUI(Non-Uniform Influence) model which is the well-known extension of the Bass model. The model developed in this paper is, also, transformed into the Bass model with the ready potential adopters in order to enhance the descriptive power.
Introduction: Diffusion is process by which an innovation is communicated through certain channel overtime among the members of a social system(Rogers 1983). Bass(1969) suggested the Bass model describing diffusion process. The Bass model assumes potential adopters of innovation are influenced by mass-media and word-of-mouth from communication with previous adopters. Various expansions of the Bass model have been conducted. Some of them proposed a third factor affecting diffusion. Others proposed multinational diffusion model and it stressed interactive effect on diffusion among several countries. We add a spatial factor in the Bass model as a third communication factor. Because of situation where we can not control the interaction between markets, we need to consider that diffusion within certain market can be influenced by diffusion in contiguous market. The process that certain type of retail extends is a result that particular market can be described by the retail life cycle. Diffusion of retail has pattern following three phases of spatial diffusion: adoption of innovation happens in near the diffusion center first, spreads to the vicinity of the diffusing center and then adoption of innovation is completed in peripheral areas in saturation stage. So we expect spatial effect to be important to describe diffusion of domestic discount store. We define a spatial diffusion model using multinational diffusion model and apply it to the diffusion of discount store. Modeling: In this paper, we define a spatial diffusion model and apply it to the diffusion of discount store. To define a spatial diffusion model, we expand learning model(Kumar and Krishnan 2002) and separate diffusion process in diffusion center(market A) from diffusion process in the vicinity of the diffusing center(market B). The proposed spatial diffusion model is shown in equation (1a) and (1b). Equation (1a) is the diffusion process in diffusion center and equation (1b) is one in the vicinity of the diffusing center.