• Title/Summary/Keyword: Battery Life

Search Result 600, Processing Time 0.032 seconds

Data-Driven Approach for Lithium-Ion Battery Remaining Useful Life Prediction: A Literature Review

  • Luon Tran Van;Lam Tran Ha;Deokjai Choi
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.63-74
    • /
    • 2022
  • Nowadays, lithium-ion battery has become more popular around the world. Knowing when batteries reach their end of life (EOL) is crucial. Accurately predicting the remaining useful life (RUL) of lithium-ion batteries is needed for battery health management systems and to avoid unexpected accidents. It gives information about the battery status and when we should replace the battery. With the rapid growth of machine learning and deep learning, data-driven approaches are proposed to address this problem. Extracting aging information from battery charge/discharge records, including voltage, current, and temperature, can determine the battery state and predict battery RUL. In this work, we first outlined the charging and discharging processes of lithium-ion batteries. We then summarize the proposed techniques and achievements in all published data-driven RUL prediction studies. From that, we give a discussion about the accomplishments and remaining works with the corresponding challenges in order to provide a direction for further research in this area.

Compatibility of Lithium ion Phosphate Battery in Solar off Grid Application

  • Lakshmanan, Sathishkumar;Vetrivel, Dhanapal;Subban, Ravi;R., Saratha;Nanjan, Sugumaran
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.472-478
    • /
    • 2022
  • Solar energy harvesting is practiced by various nations for the purpose of energy security and environment preservation in order to reduce overdependence on oil. Converting solar energy into electrical energy through Photovoltaic (PV) module can take place either in on-grid or off-grid applications. In recent time Lithium battery is exhibiting its presence in on-grid applications but its role in off-grid application is rarely discussed in the literature. The preliminary capacity and Peukert's study indicated that the battery quality is good and can be subjected for life cycle test. The capacity of the battery was 10.82 Ah at 1 A discharge current and the slope of 1.0117 in the Peukert's study indicated the reaction is very fast and independent on rate of discharge. In this study Lithium Iron Phosphate battery (LFP) after initial characterization was subjected to life cycle test which is specific to solar off-grid application as defined in IEC standard. The battery has delivered just 6 endurance units at room temperature before its capacity reached 75% of rated value. The low life of LFP battery in off-grid application is discussed based on State of Charge (SOC) operating window. The battery was operated both in high and low SOC's in off-grid application and both are detrimental to life of lithium battery. High SOC operation resulted in cell-to-cell variation and low SOC operation resulted in lithium plating on negative electrode. It is suggested that to make it more suitable for off-grid applications the battery by default has to be overdesigned by nearly 40% of its rated capacity.

A Study on Performance Reliability Analysis Device of Primary Battery (1차 전지의 성능 신뢰도 분석 장치에 관한 연구)

  • Kim, Yon Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.2
    • /
    • pp.70-76
    • /
    • 2014
  • In industrial situation, electronic and electro-mechanical systems have been using different type of batteries in rapidly increasing numbers. These systems commonly require high reliability for long periods of time. Wider application of battery for low-power design as a prime power source requires us knowledge of failure mechanism and reliability of batteries in terms of load condition, environment condition and other explanatory variables. Battery life is an important factor that affects the reliability of such systems. There is need for us to understand the mechanism leading to the failure state of battery with performance characteristic and develop a method to predict the life of such battery. The purpose of this paper is to develope the methodology of monitoring the health of battery and determining the condition or fate of such systems through the performance reliability to predict the remaining useful life of primary battery with load condition, operating condition, environment change in light of battery life variation. In order to evaluate on-going performance of systems and subsystems adopting primary batteries as energy source, The primitive prototype for performance reliability analysis device was developed and related framework explained.

Corrosion in Batteries

  • Muniyandi, N.
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • A comprehensive coverage of corrosion in batteries is rendered difficult by the wide choice of materials, environments and physical features as obtained in practical settings. Understanding of the complex processes that occur in these electrochemical systems gets clearer as new theoretical approaches backed by sophisticated analytical and characterization techniques continue to provide valuable insights which aid in controlling/mitigating wasteful corrosion reactions which affect battery shelf-life, cycle life, rate capability and capacity. In the light of the above, I limit myself to a discussion on corrosion aspects in representative system such as conventional Leclanche, lead-acid battery and magnesium batteries, and advanced lithium systems.

Development of Room Temperature Na/S Secondary Batteries (상온형 나트륨/유황 이차전지 개발 동향)

  • RYU, HOSUK;KIM, INSOO;PARK, JINSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

Preventive Measures of Battery Explosion in Lifeboat (구명정 배터리의 폭발사고 예방을 위한 대안)

  • Im, Myeong-Hwan;Ahn, Byong-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.849-855
    • /
    • 2011
  • Emergency batteries on board are used for stairs, pathway lights, and emergency communications during alternator black-out. In addition, there are engine start-up batteries in lifeboats. Typically, these batteries are installed under the Classification Rules. However, Since batteries inside life boats are installed in a confined narrow space, it is difficult to perform regular maintenances. Also, even though there are air vents in the life boat, the temperature inside the life boat often reaches above $65^{\circ}C$, which is much higher than the regulation temperature, $45^{\circ}C$. In this paper, we will summarize the accident of battery explosion occurred in MMU training ship, and possible causes. We will propose preventive measures of battery explosions as well as the revision of the regulation.

Neuro Fuzzy System for the Estimation of the Remaining Useful Life of the Battery Using Equivalent Circuit Parameters (등가회로 파라미터를 이용한 배터리 잔존 수명 평가용 뉴로 퍼지 시스템)

  • Lee, Seung-June;Ko, Younghwi;Kandala, Pradyumna Telikicherla;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.167-175
    • /
    • 2021
  • Reusing electric vehicle batteries after they have been retired from mobile applications is considered a feasible solution to reduce the demand for new material and electric vehicle costs. However, the evaluation of the value and the performance of second-life batteries remain a problem that should be solved for the successful application of such batteries. The present work aims to estimate the remaining useful life of Li-ion batteries through the neuro-fuzzy system with the equivalent circuit parameters obtained by Electrochemical Impedance Spectroscopy (EIS). To obtain the impedance spectra of the Li-ion battery over the life, a 18650 cylindrical cell has been aged by 1035 charge/discharge cycles. Moreover, the capacity and the parameters of the equivalent circuit of a Li-ion battery have been recorded. Then, the data are used to establish a neuro-fuzzy system to estimate the remaining useful life of the battery. The experimental results show that the developed algorithm can estimate the remaining capacity of the battery with an RMSE error of 0.841%.

A Design of LED Lighting Controller for use of Solar Battery (태양전지 이용을 위한 LED 조명 제어기 설계)

  • Kim, Byun-Gon;Lee, Ok-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.18-27
    • /
    • 2011
  • LED lighting because of high efficiency, long life, friendly environment, as a general lighting of the next generation, has been substituted for incandescent bulb and fluorescent lamp. The proposed system for use of solar battery is the intelligent controller for LED street lights which is improved the method of battery charging and charging efficiency in winter to extend battery life cycle, controlled lighting current according to SoC and in steps. Also, it is implemented emotional lighting which is controlled with the surrounding environment, by using colorful sub LED to take up 10[%] of a source of total light, white LED. As a lab results, the proposed system was implemented functions to adapt to the environmental changes, and improved the charging efficiency and battery life cycle.

An Optimal Energy Storage Operation Scheduling Algorithm for a Smart Home Considering Life Cost of Energy Storage System

  • Yan, Luo;Baek, Min-Kyu;Park, Jong-Bae;Park, Yong-Gi;Roh, Jae Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1369-1375
    • /
    • 2017
  • This paper presents an optimal operation scheduling algorithm for a smart home with energy storage system, electric vehicle and distributed generation. The proposed algorithm provides the optimal charge and discharge schedule of the EV and the ESS. In minimizing the electricity costs of the smart home, it considers not only the cost of energy purchase from the grid but also the life cost of batteries. The life costs of batteries are calculated based on the relation between the depth of discharge and life time of battery. As the life time of battery depends on the charge and discharge pattern, optimal charge and discharge schedule should consider the life cost of batteries especially when there is more than one battery with different technical characteristics. The proposed algorithm can also be used for optimal selection of size and type of battery for a smart home.

A Study on Impedance Change Trend and Battery Life Analysis through Battery Performance Deterioration Factors

  • Mi-Jin Choi;Young-Jun Kim;Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.129-134
    • /
    • 2023
  • Although the use of batteries is rapidly increasing worldwide to improve carbon neutrality and energy efficiency, performance degradation due to the increase in the number of uses is inevitable as it is a finite resource that can be applied according to capacity and specifications. Deterioration and failure of batteries are recognized as important problems in various applications using batteries, including electric vehicles. In order to solve these problems, a diagnostic technology capable of accurately predicting battery life and grasping state information is required, but it is difficult in a non-linear form due to internal structure or chemical change. In this paper, the factors that generally cause battery performance change are directly applied to check whether there are external changes and impedance changes in the battery, and to analyze whether they affect battery life. Impedance change trends and result values were confirmed using a universal impedance spectroscopy method and a self-developed internal impedance measurement method. The results did not significantly affect the impedance change trend. It was confirmed that the increase in the number of times of battery use was prominent in the impedance change trend.