• Title/Summary/Keyword: Battery energy storage

Search Result 751, Processing Time 0.033 seconds

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

Recent Instantiation Case of Lead Acid Battery for Energy Storage Systems (에너지 저장 시스템용 납 축전지의 최근 실증 사례)

  • An, Sang-Yong;Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.344-349
    • /
    • 2013
  • Energy storage system is an energy reservoir which can store the electrical energy produced by the power plant into the chemical energy at the time whenever it needs to use. Accordingly, the energy storage system can help to improve the energy utilization efficiency and the stabilization of the power supply system. In addition, it can cope with the issues of carbon dioxide reduction and depletion of fossil fuel. Lead-acid battery in the secondary battery fields is one of the most developed technologies. It is also economical, reliable storage device. Therefore, the instantiation case of energy storage system using lead-acid battery was investigated for the reference studies.

Design of Controllers for Battery Energy Storage System (2차전지 전력저장시스템의 제어기 설계)

  • 한석우;전윤석;최규하;목형수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.431-434
    • /
    • 1999
  • This paper presents design of controllers for battery energy storage system. The proposed battery energy storage system can be controlled to operate in the power conditioning mode or the inverter mode. The operation of this mode further divided into three cases: (a) in the peak load period, the load power supplied from the utility is minimized as far as possible; (b) in the off-peak load period, the utility supplies power to the load and charges the battery bank with automatic charging control; (c) in the medium load period, to save battery energy the real power flow out of the battery energy storage system is minimized. Besides, in all cases, the proposed battery energy storage system also automatically compensates the harmonics, subharmonics and reactive power factor in the utility side are much improved. Simulation results are presented by the effectiveness of the proposed controllers for battery energy storge system.

  • PDF

Design of a renewable energy system with battery and power-to-methanol unit

  • Andika, Riezqa;Kim, Young;Yun, Choa Mun;Yoon, Seok Ho;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • v.36 no.1
    • /
    • pp.12-20
    • /
    • 2019
  • An energy storage system consisting of a battery and a power-to-methanol (PtM) unit was investigated to develop an energy storage system for renewable energy systems. A nonlinear programming model was established to optimize the energy storage system. The optimal installation capacities of the battery and power-to-methanol units were determined to minimize the cost of the energy system. The cost from a renewable energy system was assessed for four configurations, with or without energy storage units, of the battery and the power-to-methanol unit. The proposed model was applied to the modified electricity supply and demand based on published data. The results show that value-adding units, such as PtM, need be included to build a stable renewable energy system. This work will significantly contribute to the advancement of electricity supply and demand management and to the establishment of a nationwide policy for renewable energy storage.

A Study on the Development of Battery Energy Storage System (전지이용 전력저장장치 기술개발)

  • Hwang, Yong-Ha;Lee, Keun-Seob
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.905-907
    • /
    • 1993
  • Demand for electricity is increasing annually. Especially, the daytime demand grawth shows higher than any other time period. So the big difference between maximum and minimum electrical demand becomes another important problem to be solved. The Battery Energy Storage System is chosen as one of the solutions among the sevral methods. The purpose of utilization of Battery Energy Storage System is to improve the daily load factor. Also, Battery Energy Storage System may be used for the load levelling or the load shifting as well as the spinning reserve. Up to now, only the pumped hydro power plant system has been operated on the commercial basis, but this system has so many constraints such as site, environmental effects, construction period, ect. Being considered current electrical power situation the development of electric storage system is in need latly. Among the various electric storage systems, Battery Energy System is chosen with the top priority because it has sevral merits to cover such as the short construction period, the demand site installation, and the food environmental characteristics.

  • PDF

Lithium-ion Battery Energy Storage System for Power Quality Improvement in Electrical Propulsion Ships (전기추진선박의 전력품질 개선을 위한 리튬-이온 배터리 에너지저장시스템 적용)

  • Ku, Hyun-Keun;Seo, Hye-Rim;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.351-355
    • /
    • 2015
  • This paper explained the application of a lithium-ion battery energy storage system to electric propulsion ships. The power distribution in electric propulsion ships has low power quality because of the variation in the power consumption of the propulsion motor. For proper operation of the ship, the power quality needs to be improved, and the battery energy storage system is used to solve power-quality problems. The simulation models of electric propulsion ship and battery energy storage systems are constructed on MATLAB/Simulink to verify the improvement in power quality. The proposed system is applied in various scenarios of the propulsion motor state. The power quality achieved by using the battery energy storage system in both voltage and frequency satisfies the standards set by IEC-60092/101.

Operation Mode Development and Evaluation for Grid-Tied PMSG Wind Power System Combined with Battery Energy Storage (배터리 에너지저장이 결합된 계통연계 풍력발전시스템의 운전모드 개발 및 평가)

  • Kim, Hyun-Jun;Kim, Do-Hyun;Kim, Kyung-Tae;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • This paper describes the operation mode development for the grid-tied PMSG(permanent magnet synchronous generator) wind power system combined with a battery energy storage. The development of operation modes was carried out through simulations with PSCAD/EMTDC software and experiments with a 10kW hardware prototype. The detailed simulation models for PMSG wind power system and battery energy storage were developed using user-defined models programed with C-code. A 10kW hardware simulator was built and tested in connection with the local load and the utility power. The simulation and experimental results confirm that the grid-tied PMSG wind power system combined with battery energy storage can supply highly reliable power to the local load in various operation modes.

Development of Black Box for Home Battery Energy Storage System Connected with Solar Energy Generation (태양광발전 연계 가정용 배터리 에너지저장장치의 블랙박스 개발)

  • Kim, Sang-Dong;Park, Ji-Ho;Kim, Dong-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1295-1302
    • /
    • 2016
  • In this paper, a black box, which is provided the reliability and user safety of home battery energy storage system connected with solar energy generation, is developed. In the developed scheme, a status and diagnosis data of battery management system, power conditioning system, solar energy generation and grid is measured. This status and diagnosis data is stored and displayed in the developed black box. In addition, this status and diagnosis data is stored and displayed in a monitoring system and a smart phone of user. A performance evaluation of the developed black box is carried out using emulator of home battery energy storage system connected with solar energy generation. Consequently, the developed black box is proved its superiority of the reliability and user safety.

Smooth Wind Power Fluctuation Based on Battery Energy Storage System for Wind Farm

  • Wei, Zhang;Moon, Byung Young;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2134-2141
    • /
    • 2014
  • This paper addresses on a wind power system with BESS(Battery Energy Storage System). The concerned system consists of four parts: the wind speed production model, the wind turbine model, configure capacity of the battery energy storage, battery model and control of the BESS. First of all, we produce wind speed by 4-component composite wind speed model. Secondly, the maximum available wind power is determined by analyzing the produced wind speed and the characteristic curve of wind power. Thirdly, we configure capacity of the BESS according to wind speed and characteristic curve of wind speed-power. Then, we propose a control strategy to track the power reference. Finally, some simulations have been demonstrated to visualize the feasibility of the proposed methodology.

20 KW Battery Storage System Design (20KW 전력저장 전지시스템 설계)

  • Ko, Y.;Kim, H.Y.;Nam, K.Y.;Kim, J.E.;Cho, K.Y.;Eom, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.254-257
    • /
    • 1989
  • Battery Energy Storage System has been studied and adopted actively by foreign advanced utilities, in order to utilize off peak energy. The outline of 20KW Battery Storage System design of the project - the study on the development of Battery Electric Energy Storage System, carried out by KERI KEPCO, is presented. The first target of this project is the conceptual design of MW-class Battery Storage System and 20KW Battery Storage System is its the small scale system.

  • PDF