• Title/Summary/Keyword: Bayesian Nash Equilibrium

Search Result 8, Processing Time 0.02 seconds

Bayesian Prediction for Game-structured Slotted ALOHA (게임으로 만들어진 슬롯화된 ALOHA를 위한 Bayes 풍의 예측)

  • Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • With a game-theoretic view, p-persistence slotted ALOHA is structured as a non-cooperative game, in which a Nash equilibrium is sought to provide a value for the probability of attempting to deliver a packet. An expression of Nash equilibrium necessarily includes the number of active outer stations, which is hardly available in many practical applications. In this paper, we thus propose a Bayesian scheme of predicting the number of active outer stations prior to deciding whether to attempt to deliver a packet or not. Despite only requiring the minimal information that an outer station is genetically able to acquire by itself, the Bayesian scheme demonstrates the competitive predicting performance against a method which depends on heavy information.

Stability of Slotted Aloha with Selfish Users under Delay Constraint

  • Chin, Chang-Ho;Kim, Jeong-Geun;Lee, Deok-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.542-559
    • /
    • 2011
  • Most game-theoretic works of Aloha have emphasized investigating Nash equilibria according to the system state represented by the number of network users and their decisions. In contrast, we focus on the possible change of nodes' utility state represented by delay constraint and decreasing utility over time. These foregone changes of nodes' state are more likely to instigate selfish behaviors in networking environments. For such environment, in this paper, we propose a repeated Bayesian slotted Aloha game model to analyze the selfish behavior of impatient users. We prove the existence of Nash equilibrium mathematically and empirically. The proposed model enables any type of transmission probability sequence to achieve Nash equilibrium without degrading its optimal throughput. Those Nash equilibria can be used as a solution concept to thwart the selfish behaviors of nodes and ensure the system stability.

Game Theoretic Modeling for Mobile Malicious Node Detection Problem in Static Wireless Sensor Networks

  • Ho, Jun-Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.238-242
    • /
    • 2021
  • Game theory has been regarded as a useful theoretical tool for modeling the interactions between distinct entities and thus it has been harnessed in various research field. In particular, research attention has been shown to how to apply game theory to modeling the interactions between malign and benign entities in the field of wireless networks. Although various game theoretic modeling work have been proposed in the field of wireless networks, our proposed work is disparate to the existing work in the sense that we focus on mobile malign node detection problem in static wireless sensor networks. More specifically, we propose a Bayesian game theoretic modeling for mobile malign node detection problem in static wireless sensor networks. In our modeling, we formulate a two-player static Bayesian game with imperfect information such that player 1 is aware of the type of player 2, but player 2 is not aware of the type of player 1. We use four strategies in our static Bayesian game. We obtain Bayesian Nash Equilibria with pure strategies under certain conditions.

An Economic Analysis of Commercial Arbitration from the Game Theory Perspective: Theoretical Analysis and a Case Study (게임이론을 통한 상사중재의 경제학적 분석: 이론과 사례)

  • Kim, Sung-Ryong;Hwang, Seok-Joon;Hwang, Uk
    • Korea Trade Review
    • /
    • v.43 no.6
    • /
    • pp.1-24
    • /
    • 2018
  • This study analyzes the dispute settlement of between arbitration and litigation using a game theoretical approach. Many studies on arbitration have so far focused on the relevant institutions. However, there are few theoretical studies that have focused on the demand side of arbitration. The model presented here suggests conditions under which arbitration form a perfect Bayesian Nash equilibrium, provided that the players strategically choose a dispute settlement tool. Furthermore, the suggested model is used to analyze simple cases of international commercial dispute cases.

A Stability of P-persistent MAC Scheme for Periodic Safety Messages with a Bayesian Game Model (베이지안 게임모델을 적용한 P-persistent MAC 기반 주기적 안정 메시지 전송 방법)

  • Kwon, YongHo;Rhee, Byung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.543-552
    • /
    • 2013
  • For the safety messages in IEEE 802.11p/WAVE vehicles network environment, strict periodic beacon broadcasting requires status advertisement to assist the driver for safety. In crowded networks where beacon message are broadcasted at a high number of frequencies by many vehicles, which used for beacon sending, will be congested by the wireless medium due to the contention-window based IEEE 802.11p MAC. To resolve the congestion, we consider a MAC scheme based on slotted p-persistent CSMA as a simple non-cooperative Bayesian game which involves payoffs reflecting the attempt probability. Then, we derive Bayesian Nash Equilibrium (BNE) in a closed form. Using the BNE, we propose new congestion control algorithm to improve the performance of the beacon rate under saturation condition in IEEE 802.11p/WAVE vehicular networks. This algorithm explicitly computes packet delivery probability as a function of contention window (CW) size and number of vehicles. The proposed algorithm is validated against numerical simulation results to demonstrate its stability.

Game Theory for Routing Modeling in Communication Networks - A Survey

  • Pavlidou, Fotini-Niovi;Koltsidas, Georgios
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.268-286
    • /
    • 2008
  • In this work, we review the routing models that use game theoretical methodologies. A very common assumption in the analysis and development of networking algorithms is the full cooperation of the participating nodes. Most of the analytical tools are based on this assumption. However, the reality may differ considerably. The existence of multiple domains belonging to different authorities or even the selfishness of the nodes themselves could result in a performance that significantly deviates from the expected one. Even though it is known to be extensively used in the fields of economics and biology, game theory has attracted the interest of researchers in the field of communication networking as well. Nowadays, game theory is used for the analysis and modeling of protocols in several layers, routing included. This review aims at providing an elucidation of the terminology and principles behind game theory and the most popular and recent routing models. The examined networks are both the traditional networks where latency is of paramount importance and the emerging ad hoc and sensor networks, where energy is the main concern.

Honeypot game-theoretical model for defending against APT attacks with limited resources in cyber-physical systems

  • Tian, Wen;Ji, Xiao-Peng;Liu, Weiwei;Zhai, Jiangtao;Liu, Guangjie;Dai, Yuewei;Huang, Shuhua
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.585-598
    • /
    • 2019
  • A cyber-physical system (CPS) is a new mechanism controlled or monitored by computer algorithms that intertwine physical and software components. Advanced persistent threats (APTs) represent stealthy, powerful, and well-funded attacks against CPSs; they integrate physical processes and have recently become an active research area. Existing offensive and defensive processes for APTs in CPSs are usually modeled by incomplete information game theory. However, honeypots, which are effective security vulnerability defense mechanisms, have not been widely adopted or modeled for defense against APT attacks in CPSs. In this study, a honeypot game-theoretical model considering both low- and high-interaction modes is used to investigate the offensive and defensive interactions, so that defensive strategies against APTs can be optimized. In this model, human analysis and honeypot allocation costs are introduced as limited resources. We prove the existence of Bayesian Nash equilibrium strategies and obtain the optimal defensive strategy under limited resources. Finally, numerical simulations demonstrate that the proposed method is effective in obtaining the optimal defensive effect.

A Study on Auction Mechanism for DMZ Conservation using the South-North Korean Economic Development Projects (남북경제협력에 따른 개발이익 경매와 DMZ 보전기금 확보)

  • Park, Hojeong;Kim, Joonsoon;Kim, Hyunhee
    • Environmental and Resource Economics Review
    • /
    • v.28 no.1
    • /
    • pp.39-59
    • /
    • 2019
  • The Korean Demilitarized Zone (DMZ) has the great ecosystem as all the artificial activities in DMZ have been prohibited over half a century. The ecosystem should be conserved even after the reunification of Korea and hence the conservation plan should be established not after the reunification but before it. It requires a considerable budget to conserve DMZ, considering management of ecology resource, recovery, and research. The objective of this paper is to analyze a fund-raising measure for DMZ conservation, using economic incentives mechanism when multiple developers participate in the auction to get the right to develop North Korean regions, have private information about their sunk costs and pay a part of their profits for the fund. First, we analyze the real option model to decide the optimal investment time. Second, we construct the auction for bidders not to misrepresent their private information, based on Bayesian Nash equilibrium.