• Title/Summary/Keyword: Bayesian validation method

Search Result 41, Processing Time 0.028 seconds

Analysis of Saccharomyces Cell Cycle Expression Data using Bayesian Validation of Fuzzy Clustering (퍼지 클러스터링의 베이지안 검증 방법을 이용한 발아효모 세포주기 발현 데이타의 분석)

  • Yoo Si-Ho;Won Hong-Hee;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1591-1601
    • /
    • 2004
  • Clustering, a technique for the analysis of the genes, organizes the patterns into groups by the similarity of the dataset and has been used for identifying the functions of the genes in the cluster or analyzing the functions of unknown gones. Since the genes usually belong to multiple functional families, fuzzy clustering methods are more appropriate than the conventional hard clustering methods which assign a sample to a group. In this paper, a Bayesian validation method is proposed to evaluate the fuzzy partitions effectively. Bayesian validation method is a probability-based approach, selecting a fuzzy partition with the largest posterior probability given the dataset. At first, the proposed Bayesian validation method is compared to the 4 representative conventional fuzzy cluster validity measures in 4 well-known datasets where foray c-means algorithm is used. Then, we have analyzed the results of Saccharomyces cell cycle expression data evaluated by the proposed method.

Semiparametric Regression Splines in Matched Case-Control Studies

  • Kim, In-Young;Carroll, Raymond J.;Cohen, Noah
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.167-170
    • /
    • 2003
  • We develop semiparametric methods for matched case-control studies using regression splines. Three methods are developed: an approximate crossvalidation scheme to estimate the smoothing parameter inherent in regression splines, as well as Monte Carlo Expectation Maximization (MCEM) and Bayesian methods to fit the regression spline model. We compare the approximate cross-validation approach, MCEM and Bayesian approaches using simulation, showing that they appear approximately equally efficient, with the approximate cross-validation method being computationally the most convenient. An example from equine epidemiology that motivated the work is used to demonstrate our approaches.

  • PDF

A Comparison Study on Statistical Modeling Methods (통계모델링 방법의 비교 연구)

  • Noh, Yoojeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.645-652
    • /
    • 2016
  • The statistical modeling of input random variables is necessary in reliability analysis, reliability-based design optimization, and statistical validation and calibration of analysis models of mechanical systems. In statistical modeling methods, there are the Akaike Information Criterion (AIC), AIC correction (AICc), Bayesian Information Criterion, Maximum Likelihood Estimation (MLE), and Bayesian method. Those methods basically select the best fitted distribution among candidate models by calculating their likelihood function values from a given data set. The number of data or parameters in some methods are considered to identify the distribution types. On the other hand, the engineers in a real field have difficulties in selecting the statistical modeling method to obtain a statistical model of the experimental data because of a lack of knowledge of those methods. In this study, commonly used statistical modeling methods were compared using statistical simulation tests. Their advantages and disadvantages were then analyzed. In the simulation tests, various types of distribution were assumed as populations and the samples were generated randomly from them with different sample sizes. Real engineering data were used to verify each statistical modeling method.

A Bayesian Validation Method for Classification of Microarray Expression Data (마이크로어레이 발현 데이터 분류를 위한 베이지안 검증 기법)

  • Park, Su-Young;Jung, Jong-Pil;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2039-2044
    • /
    • 2006
  • Since the bio-information now even exceeds the capability of human brain, the techniques of data mining and artificial intelligent are needed to deal with the information in this field. There are many researches about using DNA microarray technique which can obtain information from thousands of genes at once, for developing new methods of analyzing and predicting of diseases. Discovering the mechanisms of unknown genes by using these new method is expecting to develop the new drugs and new curing methods. In this Paper, We tested accuracy on classification of microarray in Bayesian method to compare normalization method's Performance after dividing data in two class that is a feature abstraction method through a normalization process which reduce or remove noise generating in microarray experiment by various factors. And We represented that it improve classification performance in 95.89% after Lowess normalization.

A study on Application of Probabilistic Fatigue Life Prediction for Aircraft Structures using the PoF based on Bayesian Approach (베이지안 기반의 파손확률을 이용한 항공기 구조물 확률론적 피로수명 예측 응용에 관한 연구)

  • Kim, Keun Won;Shin, Dae Han;Choi, Joo-Ho;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.631-638
    • /
    • 2013
  • The probabilistic fatigue life analysis is one of the common methods to account the uncertainty of parameters on the structural failure. Frequently, the Bayesian approach has been demonstrated as a proper method to show the uncertainty of parameters. In this work, the application of probabilistic fatigue life prediction method for the aircraft structure was studied. This effort was conducted by using the PoF(Probability of Failure) based on Bayesian approach. Furthermore, numerical example was carried out to confirm the validation of the suggested approach. In conclusion, it was shown that the Bayesian approach can calculate the probabilistic fatigue lives and the quantitative value of PoF effectively for the aircraft structural component. Moreover the calculated probabilistic fatigue lives can be utilized to determine the optimized inspection period of aircraft structures.

Bayesian in-situ parameter estimation of metallic plates using piezoelectric transducers

  • Asadi, Sina;Shamshirsaz, Mahnaz;Vaghasloo, Younes A.
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.735-751
    • /
    • 2020
  • Identification of structure parameters is crucial in Structural Health Monitoring (SHM) context for activities such as model validation, damage assessment and signal processing of structure response. In this paper, guided waves generated by piezoelectric transducers are used for in-situ and non-destructive structural parameter estimation based on Bayesian approach. As Bayesian approach needs iterative process, which is computationally expensive, this paper proposes a method in which an analytical model is selected and developed in order to decrease computational time and complexity of modeling. An experimental set-up is implemented to estimate three target elastic and geometrical parameters: Young's modulus, Poisson ratio and thickness of aluminum and steel plates. Experimental and simulated data are combined in a Bayesian framework for parameter identification. A significant accuracy is achieved regarding estimation of target parameters with maximum error of 8, 11 and 17 percent respectively. Moreover, the limitation of analytical model concerning boundary reflections is addressed and managed experimentally. Pulse excitation is selected as it can excite the structure in a wide frequency range contrary to conventional tone burst excitation. The results show that the proposed non-destructive method can be used in service for estimation of material and geometrical properties of structure in industrial applications.

A Unified Bayesian Tikhonov Regularization Method for Image Restoration (영상 복원을 위한 통합 베이즈 티코노프 정규화 방법)

  • Yoo, Jae-Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1129-1134
    • /
    • 2016
  • This paper suggests a new method of finding regularization parameter for image restoration problems. If the prior information is not available, separate optimization functions for Tikhonov regularization parameter are suggested in the literature such as generalized cross validation and L-curve criterion. In this paper, unified Bayesian interpretation of Tikhonov regularization is introduced and applied to the image restoration problems. The relationship between Tikhonov regularization parameter and Bayesian hyper-parameters is established. Update formular for the regularization parameter using both maximum a posteriori(: MAP) and evidence frameworks is suggested. Experimental results show the effectiveness of the proposed method.

Numerical convergence and validation of the DIMP inverse particle transport model

  • Nelson, Noel;Azmy, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1358-1367
    • /
    • 2017
  • The data integration with modeled predictions (DIMP) model is a promising inverse radiation transport method for solving the special nuclear material (SNM) holdup problem. Unlike previous methods, DIMP is a completely passive nondestructive assay technique that requires no initial assumptions regarding the source distribution or active measurement time. DIMP predicts the most probable source location and distribution through Bayesian inference and quasi-Newtonian optimization of predicted detector responses (using the adjoint transport solution) with measured responses. DIMP performs well with forward hemispherical collimation and unshielded measurements, but several considerations are required when using narrow-view collimated detectors. DIMP converged well to the correct source distribution as the number of synthetic responses increased. DIMP also performed well for the first experimental validation exercise after applying a collimation factor, and sufficiently reducing the source search volume's extent to prevent the optimizer from getting stuck in local minima. DIMP's simple point detector response function (DRF) is being improved to address coplanar false positive/negative responses, and an angular DRF is being considered for integration with the next version of DIMP to account for highly collimated responses. Overall, DIMP shows promise for solving the SNM holdup inverse problem, especially once an improved optimization algorithm is implemented.

The exponential generalized log-logistic model: Bagdonavičius-Nikulin test for validation and non-Bayesian estimation methods

  • Ibrahim, Mohamed;Aidi, Khaoula;Alid, Mir Masoom;Yousof, Haitham M.
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.1-25
    • /
    • 2022
  • A modified Bagdonavičius-Nikulin chi-square goodness-of-fit is defined and studied. The lymphoma data is analyzed using the modified goodness-of-fit test statistic. Different non-Bayesian estimation methods under complete samples schemes are considered, discussed and compared such as the maximum likelihood least square estimation method, the Cramer-von Mises estimation method, the weighted least square estimation method, the left tail-Anderson Darling estimation method and the right tail Anderson Darling estimation method. Numerical simulation studies are performed for comparing these estimation methods. The potentiality of the new model is illustrated using three real data sets and compared with many other well-known generalizations.

Study on Modeling and Simulation for Fire Localization Using Bayesian Estimation (화원 위치 추정을 위한 베이시안 추정 기반의 모델링 및 시뮬레이션 연구)

  • Kim, Taewan;Kim, Soo Chan;Kim, Jong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.424-430
    • /
    • 2021
  • Fire localization is a key mission that must be preceded for an autonomous fire suppression system. Although studies using a variety of sensors for the localization are actively being conducted, the fire localization is still unfinished due to the high cost and low performance. This paper presents the modeling and simulation of the fire localization estimation using Bayesian estimation to determine the probabilistic location of the fire. To minimize the risk of fire accidents as well as the time and cost of preparing and executing live fire tests, a 40m × 40m-virtual space is created, where two ultraviolet sensors are simulated to rotate horizontally to collect ultraviolet signals. In addition, Bayesian estimation is executed to compute the probability of the fire location by considering both sensor errors and uncertainty under fire environments. For the validation of the proposed method, sixteen fires were simulated in different locations and evaluated by calculating the difference in distance between simulated and estimated fire locations. As a result, the proposed method demonstrates reliable outputs, showing that the error distribution tendency widens as the radial distance between the sensor and the fire increases.