• Title/Summary/Keyword: BeNi thin film

Search Result 165, Processing Time 0.195 seconds

Gradational Double Annealing Process for Improvement of Thermal Characteristics of NiCr Thin Films (NiCr 박막의 발열 특성 개선을 위한 순차적 이중 열처리 방법 연구)

  • Kwon, Yong;Noh, Whyo-Sup;Kim, Nam-Hoon;Cho, Dong-You;Park, Jinseong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.714-719
    • /
    • 2005
  • NiCr thin film was deposited by DC magnetron sputtering on $A;_2O_3$/Si substrate with NiCr (80:20) alloy target. NiCr thin films were annealed at $300^{\circ}C,\;400^{\circ}C,\;500^{\circ}C,\;600^{\circ}C,\;and\;700^{\circ}C$ for 6 hr in $H_2$ after annealing at $500^{\circ}C$ for 6hr in air atmosphere, respectively. To analyze NiCr thin film properties, the changes of its micro structure were Investigated through field emission scanning electron microscope (FESEM). X-ray photoelectron spectroscopy (XPS) was used to analyze a surface of NiCr thin film. Resistance of NiCr thin film was measured by 4-point probe technique. The generated heats were measured by infrared thermometer through the application of DC voltage (5 V/l2 V). NiCr thin film treated by gradational double annealing process had uniform and small grains. Maximum temperature generated heat by NiCr micro heater was $173^{\circ}C$. We expect that our results will be a useful reference in the realization of NiCr micro heater.

Fabrication and Characterization of Ni-Cr Alloy Thin Films for Application to Precision Thin Film Resistors

  • Lee, Boong-Joo;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • Ni(75 wt.%)-Cr(20 wt.%)-Al(3 wt.%)-Mn(4 wt.%)-Si(1 wt.%) alloy thin films were prepared using the DC magnetron sputtering process by varying the sputtering conditions such as power, pressure, substrate temperature, and post-deposition annealing temperature in order to fabricate a precision thin film resistor. For all the thin film resistors, sheet resistance, temperature coefficient of resistance (TCR), and crystallinity were analyzed and the effects of sputtering conditions on their properties were also investigated. The oxygen content and TCR of Ni-Cr-Al-Mn-Si resistors were decreased by increasing the sputtering pressure. Their sheet resistance, TCR, and crystallinity were enhanced by elevating the substrate temperature. In addition, the annealing of the resistor thin films in air at a temperature higher than $300^{\circ}C$ lead to a remarkable rise in their sheet resistance and TCR. This may be attributed to the improved formation of NiO layer on the surface of the resistor thin film at an elevated temperature.

Property Changes of Ni-Co Film with the Change of Co Concentration in Sulfamate-chloride Bath (Sulfamate-Chloride Bath에서 Co 농도의 변화에 따른 Ni-Co 필름의 특성 변화)

  • Yoon, Pilgeun;Park, Deok-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Sulfamate-chloride baths were fabricated to study the properties of the electrodeposited Ni and NiCo thin films. The dependences of current efficiency, deposit composition of Ni and Co, residual stress, surface morphology and microstructure of electrodeposited Ni and NiCo thin films on CoCl2 concentration in sulfamate-chloride baths were investigated. The current efficiency was measured to be more than about 90%, independent of the changes of CoCl2 concentration in the baths. Residual stress of Ni and NiCo thin films was increased from about 45 to about 250 MPa with varying CoCl2 concentration from 0 to 0.210 M CoCl2 in the baths and then reached to a plateau, about 250 MPa above 0.420 M CoCl2 concentration. Nodular surface morphologies were observed at most CoCl2 concentrations in the baths except 0.210 M. NiCo thin film electrodeposited from the bath with 0.210 M CoCl2 concentration showed an acicular surface morphology. Pure Ni thin film consists of FCC(111), FCC(200), FCC(220), and FCC(311) peaks without any preferred orientation. On the other hand NiCo thin films make up of HCP(100), FCC(111), HCP(101), FCC(200), FCC(220) or HCP(110), FCC(311) or HCP(112) and FCC(222) peaks. It was revealed from the analysis of XRD result that FCC(111) peak at the NiCo thin film electrodeposited from the bath with 0.084 M CoCl2 concentration can be regarded as the preferred orientation. However the peak of the preferred orientation was changed to FCC(220) or HCP(110) above 0.084 M CoCl2 concentration in the baths. Then the intensity of FCC(220) or HCP(110) peak was gradually decreased with increasing CoCl2 concentration further. The crystalline size of pure Ni thin film was observed to be about 53 ㎛ and those of NiCo thin films were in the range of 35~45 ㎛.

Structural Characterization of CoCrFeMnNi High Entropy Alloy Oxynitride Thin Film Grown by Sputtering (스퍼터링 방법으로 성장한 코발트크롬철망간니켈 고엔트로피 질산화물 박막의 구조특성)

  • Lee, Jeongkuk;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.595-600
    • /
    • 2018
  • This study investigates the microstructural properties of CoCrFeMnNi high entropy alloy (HEA) oxynitride thin film. The HEA oxynitride thin film is grown by the magnetron sputtering method using nitrogen and oxygen gases. The grown CoCrFeMnNi HEA film shows a microstructure with nanocrystalline regions of 5~20 nm in the amorphous region, which is confirmed by high-resolution transmission electron microscopy (HR-TEM). From the TEM electron diffraction pattern analysis crystal structure is determined to be a face centered cubic (FCC) structure with a lattice constant of 0.491 nm, which is larger than that of CoCrFeMnNi HEA. The HEA oxynitride film shows a single phase in which constituting elements are distributed homogeneously as confirmed by element mapping using a Cs-corrected scanning TEM (STEM). Mechanical properties of the CoCrFeMnNi HEA oxynitride thin film are addressed by a nano indentation method, and a hardness of 8.13 GPa and a Young's modulus of 157.3 GPa are obtained. The observed high hardness value is thought to be the result of hardening due to the nanocrystalline microstructure.

Electrical Characteristics and Fabrication of NiCr/NiCrSi Alloy Film for High Precision Thin Film Resistors (고정밀급 박막저항을 위한 NiCr/NiCrSi박막의 제조 및 전기적 특성)

  • Lee, Boong-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.520-526
    • /
    • 2007
  • In order to acquire fundamental informations to fabricate high precision thin film resistors, NiCr/NiCrSi alloy films were prepared using Ni and Cr targets. Effect of composition on the electrical properties of the NiCr/NiCrSi alloy film were then investigated. Considering the effect of Si doping on the electrical and material characteristics, the lower TCR (temperature coefficient of resistance) values could be achieved for samples with Ni/Cr ratio of $0.8{\sim}1.5$ (in a range of relative higher specific resistivity and Cr composition of $40\;wt%{\sim}55\;wt%$) and with Si doping. Consequently, the sample prepared using a DC power showed a good TCR of $-25\;ppm/^{\circ}C$, which implies that increase of specific resistivity and decrease of TCR would be achieved more efficiently not for Ni-Cr binary material but for Si doped Ni-Cr ternary material, and not using RF power but using DC power in the sputtering process.

A Study on Corrosion Resistance and Electrical Surface Conductivity of an Electrodeposited Ni-W Thin Film (전해도금에 의한 Ni-W 합금의 내식성 및 표면 전도도 특성 연구)

  • Park, Je-Sik;Jeong, Goo-Jin;Kim, Young-Jun;Kim, Ki-Jae;Lee, Churl-Kyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.68-73
    • /
    • 2011
  • A Ni-W thin-film was synthesized by electrodeposition, and its corrosion resistance and electrical surface conductivity were investigated. Amount of tungsten in the Ni-W thin-film increased linearly with current density during the electrodeposition, and crack-free and low-crystalline Ni-21 at.%W coating layer was obtained. Corrosion resistances of the Ni-W thin-films were examined with an anodic polarization method and a storage test in a strong sulfuric acid solution. As a result, the Ni-21 at.%W thin-film exhibited the greatest corrosion resistance, and maintained the electrical surface conductivity even after the severe corrosion test, which could be applicable as a surface treatment for advanced metallic bipolar plates in fuel cell or redox flow battery systems.

Formation of Ni Oxide Thin Film and Analysis of Its Characteristics for Thermal Sensors (열형센서용 니켈 산화막의 형성 및 특성분석)

  • Lee, Eung-Ahn;Seo, Jeong-Hwan;Noh, Sang-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.169-173
    • /
    • 2005
  • Ni oxide thin films were formed through annealing treatment in the atmosphere after Ni thin films deposited by a r.f. magnetron sputtering method and then electric and material properties were analyzed for application to thermal sensors. Resistivity of Ni thin films decreased after annealing treatment at 30$0^{\circ}C$ and 40$0^{\circ}C$ for five hours due to crystallization of Ni thin films but the value increased over 45$0^{\circ}C$ because of Ni thin film's oxidation. Resistivity values of Ni thin films were in the range of 10.5 $\mu$Ωcm/$^{\circ}C$ to 2.84${\times}$10$^4$$\mu$Ωcm/$^{\circ}C$ according to the degree of Ni oxidation. Also temperature coefficient of resistance(TCR) values of Ni oxide thin films depended on the degree of Ni oxidation such as 2,188 ppm/$^{\circ}C$ to 5,630 ppm/$^{\circ}C$ in the temperature range of 0 $^{\circ}C$∼150 $^{\circ}C$. The results demonstrate that Ni oxide thin films of annealing treatment at 40$0^{\circ}C$ for 5hours could be more advantageous than pure Ni thin films and Pt thin films from a point of output properties and TCR, applied to thermal sensors.

Effects of the Changes of Current Density and Additive Concentration on Ni Thin Films in Ni Sulfamate-chloride Electrodeposition Baths (Ni Sulfamate-chloride 전기도금 용액에서 전류밀도와 첨가제의 농도 변화가 Ni 박막에 미치는 영향)

  • Yoon, Pilgeun;Park, Deok-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.62-70
    • /
    • 2018
  • Sulfamate plating solution containing a small amount of chloride bath was fabricated to study the properties of the electrodeposited Ni thin films. Effects of the changes of current density and additive concentration on current efficiency, residual stress, surface morphology and microstructure of Ni thin films electrodeposited from Ni sulfamate-chloride baths were investigated. The current efficiency was measured to be more than about 95%, independent of the changes of current density and saccharin concentration in the baths. Residual stress of Ni thin film was appeared to be the compressive stress modes in the range of $5{\sim}30mA/cm^2$ current density. Maximum compressive stress was observed at the current density of $10mA/cm^2$. Compressive stress values of Ni thin/thick films were increased to be about -85~-100 MPa with increasing saccharin concentration from 0 to 0.0195 M(4 g/L). Surface morphology was changed from smooth to nodule surface appearance with increasing the current density. Smooth surface morphology of Ni thin films electrodeposited from the baths containing saccharin was observed, independent of the saccharin concentration. Ni thin/thick films consist of FCC(111), FCC(200), FCC(220), FCC(311) and FCC(222) peaks. It was revealed that the FCC(200) peak of Ni thin films is the preferred orientation in the range of $5{\sim}30mA/cm^2$ current density. The intensity of FCC(200) peak was gradually decreased and the intensity of FCC(111) peak was increased with increasing saccharin concentration in the baths.

Study of Stress Changes in Nanocrystalline Ni Thin Films Eletrodeposited from Chloride Baths (Chloride Bath로부터 전기도금된 나노결정립 니켈 박막의 잔류응력 변화에 대한 연구)

  • Park, Deok-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.163-170
    • /
    • 2011
  • Nanocrystalline Ni thin films were electodeposited from chloride baths to investigate the influences of additive concentration, current density and solution pH on residual (or internal) stress, surface morphology, and microstructure of the films. It was observed that residual stress in Ni thin film was changed from tensile stress mode (about 150 MPa) to compressive stress mode (about -100 MPa) with increasing saccharin concentration as an additive. Microstructure of Ni thin films was changed with/without saccharin in baths. Ni thin films electrodeposited from saccharinfree bath mainly consisted of both FCC(111) and FCC(200) phases. However, Ni thin film electrodeposited from the baths containing saccharin exhibited FCC(111), FCC(200) and FCC (311) phases [sometimes, FCC (220)]. Current density influenced residual stress of Ni thin films. It was measured to be the lowest compressive stress value (about-100 MPa) in range of current density of $2.5\sim10mA{\cdot}cm^{-2}$. Solution pH also influenced residual stress of Ni thin film. Addition of saccharin in baths affected grain size of Ni thin films. Grain sizes of Ni thin films were measured to be about 60 nm without saccharin and 24~38 nm with more than 0.0005M saccharin concentration. Surface of Ni thin films was changed from nodular to smooth surface morphology with addition of saccharin.

Effect of Highly Oriented Layer on GMR and Magnetic Properties of NiFe/Cu Thin Film Prepared by Magnetron Sputtering

  • Yoo, Yong-Goo;Yu, Seong-Cho;Min, Seong-Gi;Kim, Kyeong-Sup;Jang, Pyung-Woo
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.129-131
    • /
    • 2001
  • In order to investigate the effect of the interface on GMR, [NiFe(25 ${\AA}$)/Cu(24${\AA}$)]$_2$/Si thin film was epitaxially grown on HF-treated Si (001) substrate using a DC magnetron sputtering method. Typical GMR effects could be observed in epitaxial film with a weak antiferromagnetic exchange coupling while non epitaxial film showed unsaturated and broad MR curves probably due to inter-diffusion between NiFe and Cu layers. Ferromagnetic resonance (FMR) experiment showed two distinct absorption peaks in all films. Each peak was revealed to come from each NiFe layer with different magnetic property. In FMR measurement very clear interface in epitaxial films could be confirmed by a lower value of line width (ΔH) and higher M$\sub$s/ of epitaxial film than those of non epitaxial films, respectively.

  • PDF