• Title/Summary/Keyword: Beam method

Search Result 6,506, Processing Time 0.034 seconds

The modal characteristics of non-uniform multi-span continuous beam bridges

  • Shi, Lu-Ning;Yan, Wei-Ming;He, Hao-Xiang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.997-1017
    • /
    • 2014
  • According to the structure characteristics of the non-uniform beam bridge, a practical model for calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the model includes not only the beam bridge structure but also the non-uniform beam with added masses and elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal perturbation method and establishment of a semi-analytical method for solving the vibration equation of the non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the application of the modal perturbation method is suitable for solving the vibration equation of the simply supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses on dynamic characteristics of the three-span non-uniform beam bridge are reported.

A Study on Beam Error Method of Coherent Interference Signal Estimation using Optimum Covariance Weight Vector (최적 공분산 가중 벡터를 이용한 상관성 간섭 신호 추정의 빔 지향 오차)

  • Cho, Sung Kuk;Lee, Jun Dong;Jeon, Byung Kook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.53-61
    • /
    • 2014
  • In this paper, we proposed covariance weight matrix using SPT matrix in order to accurate target estimation. We have estimated a target using modified covariance matrix and beam steering error method. We have minimized beam steering error in order to estimation desired a target. This method obtain optimum covariance weight using modified SPT matrix. This paper of proposal method is showed good performance than general method. We updated a weight of covariance matrix using modified SPT matrix. We obtain optimum covariance matrix weight to application beam steering error method in order to beam steering toward desired target. Through simulation, we showed that compare proposal method with general method. It have improved resolution of estimation target to good performance more proposed method than general method.

Optimization of Prestressed Concrete Beam Section (프리스트레스트 콘크리트 보 단면의 최적설계)

  • 조선규;최외호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.91-101
    • /
    • 2000
  • As the computer related technology evolves a study for a practical use of real structure as well as its hteory for optimum design has been greatly advanced. But the study on optimum design of pre-stressed concrete beam(PSC-beam) bridge for the construction of national roads and highways in Korea is not sufficient. Since a standard section for the PSC-beam is proposed, it is practically used in designing the PSC-beam. It is noticed that the section using the current standard PSC-beam design to be an over-designed with its surplus safety factor. Therefore, it is necessary to consider economical PSC-beam section which automatically satisfies all requirement of design specifications. Thus, in this study, the optimum design methods of PSC-beam are carried out using the gradient-based search method and global search method. As a result of the optimum design method, it was confirmed that the design of PSC-beam has a serious properties to non-linearity and discontinuity. And the section that in economical and efficinet design methods than the current standard design method is proposed.

Analytic solution of Timoshenko beam excited by real seismic support motions

  • Kim, Yong-Woo
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.247-258
    • /
    • 2017
  • Beam-like structures such as bridge, high building and tower, pipes, flexible connecting rods and some robotic manipulators are often excited by support motions. These structures are important in machines and structures. So, this study proposes an analytic method to accurately predict the dynamic behaviors of the structures during support motions or an earthquake. Using Timoshenko beam theory which is valid even for non-slender beams and for high-frequency responses, the analytic responses of fixed-fixed beams subjected to a real seismic motions at supports are illustrated to show the principled approach to the proposed method. The responses of a slender beam obtained by using Timoshenko beam theory are compared with the solutions based on Euler-Bernoulli beam theory to validate the correctness of the proposed method. The dynamic analysis for the fixed-fixed beam subjected to support motions gives useful information to develop an understanding of the structural behavior of the beam. The bending moment and the shear force of a slender beam are governed by dynamic components while those of a stocky beam are governed by static components. Especially, the maximal magnitudes of the bending moment and the shear force of the thick beam are proportional to the difference of support displacements and they are influenced by the seismic wave velocity.

A Study on Structural Safety Evaluation of Improved PSC Beam Bridges Considering To-Box Reinforcement Effect (박스형 보강효과를 고려한 개선된 PSC Beam교의 구조 안전성 평가에 관한 연구)

  • Han, Sung Ho;Shin, Jae Chul;Bang, Myung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.197-211
    • /
    • 2007
  • The deteriorated PSC Beam bridge is necessary improved reinforcement method. In the study, it is proposed the box reinforcing method which could make the stiffness of the PSC Beam bridges increase more stably through the secondary composition effect of open type PSC Beam bridge's girder which is converted into the consolidation box type and the half panel is formed between the lower flange of the PSC Beam about the deteriorated PSC Beam bridge suffering the capacity decline. In case the proposed reinforcement method combine with the existed external prestressed method, the close analysis depending on the time is conducted by the construction stage because of searching the effect of reinforcement quantitatively. The reinforcement method of the box type which is proposed an efficiency improvement in objective in application case, by a reinforcement method after proposing the whole and bend sectional reinforcement method, against a each reinforcement method evaluated the upward camber which it follows in secondary composite effect and a member stress characteristics. Also, the structural safety of PSC Beam bridge is evaluated quantitatively by examining of rating factor through load carrying capacity evaluation.

Error Analysis and Improvement of the Timoshenko Beam based Finite Element Model for Multi-Stepped Beam Structures (다단 보 구조에서의 티모센코 보 유한요소 모델링 오차분석 및 개선)

  • 홍성욱;이용덕;김만달
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.199-207
    • /
    • 2003
  • The Timoshenko beam model has been known as the most accurate model for representing beam structures. However, the Timoshenko beam model may give rise to a significant error when it is applied to multi-stepped beam structures. This paper is intended to demonstrate the modeling error of Timoshenko beam based finite element model for multi-stepped beam structures and to suggest a new modeling method to improve the accuracy. A tentative bending spring is introduced into the stepped section to represent the softening effect due to the presence of step. This paper also proposes a finite element modeling method in the light with the tentative bending spring model for the step softening effect. The proposed method rigorously adapts computation results from a commercial finite element code. The validity of the proposed method is demonstrated through a series of simulation and experiment.

A Study of Broad-band Conformal Beam Forming using Moving Least Squares Method (Moving Least Squares 기법을 이용한 광대역 컨포멀 빔 형성 연구)

  • Jung, Sang-Hoon;Lee, Kang-In;Jung, Hyun-Kyo;Chung, Young-Seek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.83-89
    • /
    • 2019
  • In this paper, beam forming using moving least squares method (MLSM) is studied. In the previous research, the least squares method (LSM), one of the data interpolation methods, was used to determine the desired beam pattern and obtain a beam pattern that minimizes the square of the error with the desired beam pattern. However, LSM has a disadvantage in that the beam pattern can not be formed to satisfy the exact steering angle of the desired beam pattern and the peak sidelobe level (PSLL) condition. To overcome this drawback, MLSM is used for beam forming. In order to verify, the proposed method is applied in beam forming of Bezier platform array antenna which is one of conformal array antenna platform.

A Pilot Study of the Scanning Beam Quality Assurance Using Machine Log Files in Proton Beam Therapy

  • Chung, Kwangzoo
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.129-133
    • /
    • 2017
  • The machine log files recorded by a scanning control unit in proton beam therapy system have been studied to be used as a quality assurance method of scanning beam deliveries. The accuracy of the data in the log files have been evaluated with a standard calibration beam scan pattern. The proton beam scan pattern has been delivered on a gafchromic film located at the isocenter plane of the proton beam treatment nozzle and found to agree within ${\pm}1.0mm$. The machine data accumulated for the scanning beam proton therapy of five different cases have been analyzed using a statistical method to estimate any systematic error in the data. The high-precision scanning beam log files in line scanning proton therapy system have been validated to be used for off-line scanning beam monitoring and thus as a patient-specific quality assurance method. The use of the machine log files for patient-specific quality assurance would simplify the quality assurance procedure with accurate scanning beam data.

A Method for Determining Exact Modal Parameters of Non-Uniform, Continuous Beam Structures with Damping Elements (감쇠 요소를 포함하는 불균일 연속 보 구조물을 위한 엄밀한 모드 해석 방법)

  • 홍성욱;김종욱;박종혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.202-211
    • /
    • 1998
  • The present paper proposes a modal analysis procedure to obtain exact modal parameters (natural frequencies, damping ratios, eigenvectors) for general, non-uniform beam-like structures. The proposed method includes a derivation of the system dynamic matrix for a Timoshenko beam element. The proposed method provides not only exact modal parameters but also exact frequency response functions (FRFs) for general beam structures. A time domain analysis method is also proposed. Two examples are provided for validating and illustrating the proposed method. The first numerical example compares the proposed method with FEM. The second example deals with a non-uniform beam structure supported in joints with damping property. The numerical study proves that the proposed method is useful for the dynamic analysis of continuous systems consisting of beam-like structures.

  • PDF

Dynamic Equivalent Continuum Modeling of a Box-Beam Typed Wing (Box-Beam 형상 날개의 동적 등가연속체 모델링에 관한 연구)

  • 이우식;김영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2704-2710
    • /
    • 1993
  • A simple and straightforward method is introduced for developing continuum beam-rod model of a box-beam typed aircraft wing with composite layered skin based on "energy equivalence." The equivalent continuum structral properties are obtained from the direct comparison of the reduced stiffness and mass matrices for box-beam typed wing with those for continuum beam-rod model. The stiffness and mass matrices are all represented in terms of the continuum degrees-of freedom defined in this paper. The finite-element method. The advantage of the present continuum method is to give every continuum structural properties including all possible coupling terms which represent the couplings between different deformations. To evaluate the continuum method developed in this paper, free vibration analyses for both continuum beam-rod and box-beam are conducted. Numerical tests show that the present continuum method gives very reliable structural and dynamic properties compared to the results by the conventional finite-element analysis. analysis.