• Title/Summary/Keyword: Beam profile

Search Result 467, Processing Time 0.026 seconds

An Analysis of the Relationship between Surface Profile Error of f-$\theta$Lens and Optical Performance (f-$\theta$렌즈 표면형상오차와 광학적 성능과의 연관성 분석)

  • Kim, Dong-Sik;Lee, In-Yong;Kim, Hyeong-Chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.90-95
    • /
    • 2001
  • f-$\theta$len is one of the important parts in Laser Scanning Unit because it affects on the optical performance of Laser Scanning Unit dominantly. It is necessary to find out the relationship between the surface profile error of f-$\theta$lens and the beam profile focusing on the Organic Photo Conductive drum in order to analysis the beam profile problems such as appearance of side lobe and expansion of center lobe. In this research, a simulation process which relates the surface profile characteristics to the beam profile has been developed by CODE V. The simulated beam profile also have been compared with the measurement results.

  • PDF

The Verification of Dosimetric Characteristics of the 3-D Compensator with the Exit Beam Dose Profile (Exit Beam Dose Profile을 이용한 3차원 보상체의 성능확인)

  • 이상훈;이병용;권수일;김종훈;장혜숙
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.3-17
    • /
    • 1996
  • Dose compensators have been widely used in radiotherapy fields. But, few reliable verification methods have been reported. We have developed the verification method for the evaluation of the effect of dose compensator using exit beam dose profile. The exit beam dose profiles were measured with and without dose compensator. For this purpose X-Omat V films and lead screened cassettes are used and dose distibutions are compared. Phantom data are collected using CT simulator(Picker, AcQ Sim) and compensator information can be obtained from Render Plan 3-D planning System. Aluminum Compensators are generated by computer controlled milling machine. The real dose distribution in the phantom and the exit beam dose profile can be obtained simultaneously with the films in the phantom and the opposite site of the beam. Dose compensations effects for oblique beam, parallel opposing beam and inhomogeneous human phantom can be obtained using above tools. And we could simate those effects with exit beam dose profile using the method that we have developed in this study.

  • PDF

3-D Profile Measurement System of Live Human Faces for the '93 Taejon Expo Kumdori Robot Scupltor (93 대전엑스포 꿈돌이 조각가로보트의 인물형상 측정시스템)

  • 김승우;박현구;김문상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.670-679
    • /
    • 1995
  • This paper presents the 3-D profile measurement system of live human faces, which was developed specially for 'KUMDORI sculptor robot' of the '93 Taejon Exposition. '93 Taejon EXPO. The basic principle for measurement adopts the slit beam projection which is a method of measuring 3-D surface profiles using geometric optics between the slit beam and the CCD camera. Since the slit beam projection consumes long measuring time, it is unfit to measure the 3-D profiles of living objects as human. Therefore, the projection type slit beam method which consumes short measuring time is newly suggested. And an algorithm to reconstruct the 3-D profile from the deformed images using finite approximated calibration is suggested and practically implemented. The projection type slit beam method was applied to spectators in a period of '93 Taejon EXPO. The measurement results show that the technique is suitable for 3-D face profile measurement on a living body.

Frequency Characteristics of Surface Wave Generated by Single-Line Pulsed Laser Beam with Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

  • Seo, Ho-Geon;Kim, Myung-Hwan;Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • Using a single-line pulsed laser beam is well known as a useful noncontact method to generate a directional surface acoustic wave. In this method, different laser beam energy profiles produce different waveforms and frequency characteristics. In this paper, we considered two typical kinds of laser beam energy profiles, Gaussian and square-like, to find out a difference in the frequency characteristics. To achieve this, mathematical models were proposed first for Gaussian laser beam profile and square-like respectively, both of which depended on the laser beam width. To verify the theoretical models, experimental setups with a cylindrical lens and a line-slit mask were respectively designed to produce a line laser beam with Gaussian spatial energy profile and square-like. The frequency responses of the theoretical models showed good agreement with experimental results in terms of the existence of harmonic frequency components and the shift of the first peak frequencies to low.

Improvement of Ion Beam Resolution in FIB Process by Selective Beam Blocking (선택적 빔 차단을 통한 집속이온빔 가공 정밀도 향상)

  • Han, Min-Hee;Han, Jin;Kim, Tae-Gon;Min, Byung-Kwon;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.84-90
    • /
    • 2010
  • In focused ion beam (FIB) fabrication processes the ion beam intensity with Gaussian profile has a drawback for high resolution machining. In this paper, the fabrication method to modify the beam profile at substrate using silt mask is proposed to increase the machining resolution at high current. Slit mask is utilized to block the part of beam and transmit only high intensity portion. A nano manipulator is utilized to handle the silt mask. Geometrical analysis on fabricated profile through silt mask was conducted. By utilizing proposed method, improvement of machining resolution was achieved.

3-Dimensional Profile Measurement of Free-Formed Surfaces by Slit Beam Scanning Topography (슬릿광 주사방법에 의한 자유곡면의 삼차원형상 측정)

  • 박현구;김승우;박준호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1202-1207
    • /
    • 1993
  • An optical method of slit beam scanning topography is presented for the 3-dimensional profile measurement of free-formed surfaces. A slit beam of laser is projected in a scanning mode and its illuminated trajectory on the object is captured by using a CCD camera. The 3-dimensional coordinates of the trajectory is then computed by using the given geometry between the slit beam and the camera, so that the whole surface profile of the object can be obtained in a successive manner. Detailed optical principles are described with special emphasis to lateral are discussed to demonstrate the measuring performances of the slit beam scanning topography proposed in this study.

Study of neutral beam characteristics using SIMS depth profile and improvement of neutral beam flux (SIMS depth profile을 이용한 중성빔 특성 분석 및 flux 향상방안)

  • Kim, Seong-U;Park, Byeong-Jae;Min, Gyeong-Seok;Gang, Se-Gu;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.61-62
    • /
    • 2007
  • low angle forward reflected neutral beam etching system으로 식각한 후 SIMS depth profile을 이용하여 에너지 침투 깊이에 따른 중성빔 에너지를 분석하여 중성화 과정에서 에너지와 flux의 손실이 있었다. 기존의 two-grid 대신에 three-grid를 사용하여 에너지의 변화없이 이온 flux 및 중성빔 flux가 향상됨을 알 수 있었다.

  • PDF

Transverse Profile Measurement of Proton Beam using the Beam Induced Fluorescence Monitor in KIRAMS-13 Cyclotron (Beam Induced Fluorescence 모니터를 이용한 KIRAMS-13 싸이클로트론의 양성자빔 횡단면 측정)

  • Nam, S.K.;Kim, K.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.418-425
    • /
    • 2009
  • To get the stable and optimized proton beam in the KIRAMS-13 cyclotron which installed in the regional cyclotron center, it is necessary to measure the transverse profile of proton beam. Beam Induced Fluorescence monitor is one of the non-destructive methods to measure the beam profiles, and it has many advantages such as a simple structure, real-time measurement, and minimum energy loss. The objective of this research is the design and development of Beam Induced Fluorescence monitor to measure the proton beam profiles in the KIRAMS-13 cyclotron.

Effects of Material Anisotropy on Ultrasonic Beam Propagation: Diffraction and Beam Skew

  • Jeong, Hyun-Jo;Schmerr, W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.198-205
    • /
    • 2006
  • The necessity of nondestructively inspecting austenitic steels, fiber-reinforced composites, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface playa key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasilongitudinal(qL) beam propagates in the symmetry plane of transversely isotropic austenitic steels. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions.

Improvement of the Radiation Beam Profile of a Medical Ultrasonic Transducer (의료용 초음파 트랜스듀서의 방사 빔 형상 개선)

  • Park, Yeonsue;Lee, Wonseok;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.264-273
    • /
    • 2015
  • Improvement of the radiation beam profile of a medical ultrasonic transducer has been researched in this paper. In order to improve the beam profile, a new transducer structure has been devised that includes both a shaded electrode and a multi-focus lens. For a linear sound source, the beam profile was investigated through finite element analysis, and then the optimal design of the devised structure was carried out by considering such performances as sidelobe level, focal range and beamwidth simultaneously. In the process, the optimal dimension of the devised structure was derived by using the ratio of the focal range to the minimum beamwidth as a performance index. As a result, the beam profile has been improved to have a lower sidelobe level at -20.2 dB and a consistent narrow beamwidth from 30 mm to 160 mm depth with the minimum beamwidth at 2.04 mm. Further, a prototype transducer was fabricated to have the devised structure, and its performance was measured and compared with the analysis results to confirm the validity of the devised transducer structure.