• Title/Summary/Keyword: Bell Mouth Inlet

Search Result 6, Processing Time 0.019 seconds

Numerical analysis on the performance of centrifugal fans according to shapes of inlet bell-mouth in a refrigerator (입구 벨마우스 형상에 따른 냉장고 원심홴의 성능에 대한 수치적 분석)

  • Kim, Sang-Hyeon;Heo, Seung;Cheong, Cheol-Ung;Kim, Tae-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.737-742
    • /
    • 2011
  • Because of complex structure of inlet and outlet flows, the performance of centrifugal fans used in a household refrigerator is affected by many parameters of duct system surrounding the fans. In this paper, the performance of a centrifugal fan is numerically analysed according to shapes of inlet bell-mouth. To improve performance of the centrifugal fan, some design parameters are selected for comparison. On a basis of these comparison, optimum shape of inlet bell-mouth is proposed to maximise the flow rate of the fan.

  • PDF

Study on the Effect of Total Pressure Loss by Bell Mouth Inlet Screen (벨 마우스 흡입구 보호망에 의한 전압력 손실영향 연구)

  • Lee, Changwook;Choi, Seong Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.29-35
    • /
    • 2021
  • Bell mouth inlet is applied in various industries due to the advantage of little pressure loss and accurate flow measurement. In this study, the configuration of the bell mouth intake is designed in a long radius shape, and a suitable grid size was selected to minimize the pressure drop and to prevent the engine damage by foreign objects at outdoor operating conditions. It was able to present a modified pressure drop coefficient equation from two data obtained from the computational simulation and experimental results for the total pressure loss by inlet screen installation.

CFD Prediction on Vortex in Sump Intake at Pump Station (펌프 흡수정내 발생된 보텍스에 대한 CFD 예측)

  • Park, Sang-Eun;Roh, Hyung-Woon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.39-46
    • /
    • 2007
  • In large pump station, vortex generation such as free-surface vortex and submerged vortex occurring around pump intake, or at bell-mouth inlet has been an important flow characteristics which should be considered always to keep away the suction of air-entrained or cavitated flow. In this study, a commercial CFD code was used to predict accurately the vortex generation for the specified intake design. These result shows the preliminary result of submerged vortex prediction for the Turbo-machinery Society of Japan Sump Test CFD standard model. At bottom wall, air volume fraction (red color) was found in a large scale to explain the submerged vortex generation at particular operation and configuration condition. And these indicate the free surface formation behind the bell mouth. Particularly, non-uniform approaching flow is a major parameter to govern the occurrence of the free-surface vortex. Futhermore the comparison between turbulence ($k-{\epsilon}$ & $k-{\omega}$ model) mode were executed in this study.

A Numerical Study of Radiation Effect from Ducted Fans with Liners (라이너가 있는 덕트의 소음방사 특성에 관한 수치적 연구)

  • 임창우;정철웅;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1010-1015
    • /
    • 2002
  • Over the last few decades, noise has played a major role in the development of aircraft engines. The dominant noise is generated by the wake interactions of fan and downstream stator. Engine inlet and exhaust ducts are being fitted with liner materials that aid in damping fan related noise. In this paper, the radiation of duct internal noise from duct open ends with liners is studies via numerical methods. The linearized Euler's equations in generalized curvilinear coordinates are solved by the DRP scheme. The far field sound pressure levels are computed by the Kirchhoff integration method. Through comparison of sound directivity from bell-mouth duct with and without liners, it is shown that radiation from engine inlet is affected by liner effects or a soft wall boundary condition.

  • PDF

Performance and Flow Characteristics of Axial Fan (축류팬의 성능 평가 및 주변 유동 특성)

  • 김재원;정윤영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.972-981
    • /
    • 2000
  • Comprehensive work is done for flows by an axial fan by experimental research. The present model fan is used for air handling device for out-door unit of an air conditioner in home appliance. PIV(Particle Image Velocimetry) system and wind tunnel are adopted for measurements of flows and performance evaluation, respectively. Major experimental conditions are the installation depth of a fan into a bellmouth of it. Optimal position of a fan in an inlet guide tube is observed by examination of fan-performance and flows in both upstream and downstream of the fan. Consequently, in the case of the fan inserted in half depth into the inlet tube, the efficiency of fan shows its maximum value and flow patterns is also streamlined.

  • PDF

Numerical and Experimental Analysis of Design Parameters of a Slim Room Air-conditioner (슬림형 룸에어컨 설계 인자에 관한 연구)

  • Shin Jong Jin;Lee Hee Sool;Kim Jong Moon;Min June Kee;Oh Sang Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.95-100
    • /
    • 2005
  • Numerical simulations and experiments were conducted to analyze the design parameters for a slim room air-conditioner. These design parameters included a fan shape, a front panel, a scroll shape, a bell mouth, a distance between a fan and a heat exchanger, etc. Each design parameter was analyzed numerically and/or experimentally in terms of the flow rate and the sound pressure level, which should be the most influential factors for developing the slim room air-conditioner. The fan with a uniform height showed a better performance than that with a linearly varying height. It is recommended to use a front grill rather than a front panel according to sound pressure levels since the front panel itself is a huge resistance to the inlet flow. A redesigned scroll shape by changing the rotational direction of a fan also contributed a lot to lowering the sound pressure level. There existed a distance between a fan and a heat exchanger, where flow rates increased effectively.