• Title/Summary/Keyword: Bench-Top XRF

Search Result 4, Processing Time 0.018 seconds

Comparison of the Heavy Metal Analysis in Soil Samples by Bench-Top ED-XRF and Field-Portable XRF (Bench-Top ED-XRF 및 휴대용 XRF를 이용한 토양 시료 중의 중금속 비교 분석)

  • Choi, Soo-Jung;Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.293-301
    • /
    • 2009
  • As a basic research for development of the domestic field-portable XRF spectrometer, we discussed the analytical results of bench-top ED-XRF and field-portable XRF method for polluted heavy metals such as Cr, As, Se, Hg, Pb, Cd in soil samples. To obtain the best performance of the XRF spectrometer, the instrumental parameters of X-ray tube-voltage and measurement time were optimized for 6 heavy-metal elements in soil using certified reference material. The quantitative analysis of Cr, As, Se, Hg, Pb, Cd concentration in certified reference materials and soil samples were compared by empirical method and fundamental parameter method.

Analysis of the hazardous RoHS materials in polyethylene and polypropylene samples by bench-top and portable XRF methods (탁상형 및 휴대형 X-선 형광 분석기를 이용한 폴리에틸렌 및 폴리프로필렌 시료 중 RoHS 규제 물질의 비교 분석)

  • Choi, Soo-Jung;Kim, Chong-Hyeak;Lee, Sueg-Geun;Kang, In-Sung
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.74-82
    • /
    • 2010
  • As a basic research for development of the domestic portable XRF spectrometer, we discussed the analytical results of bench-top and portable XRF methods for RoHS materials of the Cd, Pb, Hg, Cr(IV), polybrominated biphenyls(PBB) and polybrominated diphenyl ehters(PBDE). The instrumental parameters such as measurement time of bench-top and portable XRF were optimized using certified reference materials of polyethylene and polypropylene with 5 hazardous materials of 0~1,200 mg/kg. The quantitative analysis of total-Cr, total-Br, Cd, Hg and Pb in certified reference materials and plastic samples were compared by empirical method, fundamental parameter method of bench-top XRF and portable XRF.

Comparison study of the wear metal analysis in oil sample by portable and bench-top XRF (휴대용 및 Bench-Top X-선 형광 분석기를 이용한 오일 시료 중 마찰 금속의 비교 분석)

  • Choi, Soo-Jung;Kim, Chong-Hyeak;Lee, Sueg-Geun;Kim, Dong-Pyo
    • Analytical Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.422-431
    • /
    • 2009
  • The analytical results of wear metals such as Na, Mg, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Ag, Cd, Sn, Ba, Pb in oil samples are compared by portable and bench-top XRF methods as a basic study for the development of portable X-ray fluorescence spectrometer. The instrumental parameters such as measurement time of portable and bench-top XRF were optimized using certified reference materials of hydrocarbon oil with 20 wear metals in concentration range from 10 to 900 mg/kg. The analytical results of 20 wear metals in certified reference materials and new/used engine oil samples were compared by empirical and fundamental parameter methods.

Applicability for Authenticity of Bronze Artefacts using Scientific Analyses (과학적 분석을 통한 전세품 청동기의 진위판별 적용 가능성 연구)

  • Do, Misol;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.355-366
    • /
    • 2013
  • Diverse scientific analyses, including microstructure, ICP-AES, SEM-EDS, and P-XRF(Bench Top type and Gun type), were carried out on 6 bronze artefacts which handed from generation to generation. Also, we attempted to study applicability for authenticity of the bronze artefacts using scientific analyses based on the specific element. The results of ICP-AES analysis showed that the bronze were formed from an alloy of Cu, Sn, Pb with trace elements such as Ag, As, Co, Fe, but there were not Zn found. The result of P-XRF are 10~25% lower in Cu and 10~20% higher in Sn than that of ICP-AES. This is because of destannification that the compound of $SnO_2$ are present on the surface. The results of SEM-EDS represented that there is lead segregation. It was difficult to study applicability for authenticity of bronze artefact according to the microstructures and chemical components of the bronze artefacts. Therefore, as bronze artefacts have shown different corrosion materials depending on the buried environment and conserving environment, identifying the authenticity would be possible on the basis of the additional researches on the corrosion and comparative research of ancient art.