• Title/Summary/Keyword: Benzaldehyde

Search Result 225, Processing Time 0.024 seconds

Michaelis-Menten Behaviour in the Oxidation of Benzaldehydes by Pyridinium Chlorochromate (Corey's Reagent)

  • Ganesh P. Panigrahi;Sasananda Padhy
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.547-550
    • /
    • 1992
  • The oxidation of benzaldehyde, 3,4-dimethoxy benzaldehyde, p-methoxy benzaldehyde, m-$NO_2$-benzaldehyde, and m-chlorobenzaldehyde by pyridinium chlorochromate (Corey's reagent) are reported. Michaelis-Menten behaviour is observed. The rate determining step appears to be the decomposition of a complex of benzaldehyde with PCC either through a loss of $H^+$ or $H^-$ ions.

The Effect of pH on the Condensation Reaction of Benzaldehyde and Semicarbazide (Benzaldehyde와 Semicarbazide의 결합에 미치는 pH치의 영향)

  • 이길상;김인자
    • YAKHAK HOEJI
    • /
    • v.6 no.1
    • /
    • pp.5-7
    • /
    • 1962
  • Like the condensation reaction of general aldehyde, that of benzaldehyde with semicarbazide also depends upon the concentration of carbonium ion that is produced by hydrogen ion. The lower pH value is the facility of the formation of carbonium ion in the condensation reaction, while the reactivity of semicarbazide as a reactant is reduced. In this paper, therefore we want to find out the optimum pH value in the condensation reaction of benzaldehyde with semicarbazide. This optimum pH value was determined by using the simple paper-chromatographic method. According to the result of this experiment, the condensation reaction between benzaldehyde and semicarbazide reacts with its highest point at 3.5pH value. It seems clear that at this point the benzaldehyde acquires the most suitable amount of carbonium ion for the condensation reaction with semicarbazide, and the semicarbazide also has the optimum reactivity.

  • PDF

Concentration and Solvent Effects upon Carbonyl Streching Frequency Shifts of Raman Spectra: 4-Substituted Benzaldehydes

  • Jeong, Yeong Mi;Gang, Jae Su;Seo, Seung Heon;Lee, Mu Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.128-131
    • /
    • 1996
  • From Raman spectra, the ${\nu}g$C=O frequencies of 4-substituted benzaldehydes were found to correlate with the ${\sigma}_p$ values of the 4-x atom or group as well as the acceptor number (AN) values of solvents. In various solvents, the ${\nu}g$C=O frequency of benzaldehyde decreased upon the increase of benzaldehyde concentration. This shift was mainly due to the hydrogen bonding between the carbonyl oxygen and/or aldehydic proton of benzaldehyde and the solvent molecules. Over the 1-80 volume % change, the ${\nu}g$C=O frequency of benzaldehyde down shifted from 1709.4 $cm^{-1}$ to 1700.2 $cm^{-1}$ in CCl4 solution and from 1703.0 $cm^{-1}$ to 1698.0 $cm^{-1}$ in $C_2H_5OH$ solution. This is due to the fact that hydrogen bonding between the benzaldehyde and C2H5OH was much stronger than that between the benzaldehyde and the other solvents.

Inclusion Complex of $Permethylated-{\bata}-Cyclodextrin$ with Benzaldehyde

  • Choi Hee-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.179-183
    • /
    • 1992
  • A stable solid new inclusion complex with benzaldehyde and $permethyl-\beta-cyclodextrin$ was obtained by recrystallization method. The structure of the $benzaldehyde-permethyl-\beta-cyclodextrin$ inclusion complex in the solid and solution state have been studied by UV, IR, $^1H-NMR$, $^{13}C-NMR$ and FAB-mass spectroscopy.

DNA Sequence of the phnN Gene for Benzaldehyde Dehydrogenase from Pseudomonas sp. DJ77 and Its Substrate Preference

  • Kim, Seong-Jae;Hwang, Soon-Young;Kim, Young-Chang
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.224-228
    • /
    • 1999
  • Benzaldehyde dehydrogenase (BZDH), an enzyme involved in the degradation of toluene and xylenes, is encoded by the phnN gene of Pseudomonas sp. strain DJ77. We determined the nucleotide sequence of a DNA fragment of 1,803 base pairs which included the phnN gene. The fragment contained an open reading frame of 1,506 base pairs to accommodate th 55 kDa sized enzyme encoding BZDH. The enzyme efficiently oxidized benzaldehyde, salicylaldehyde, m-tolualdehyde and ps-tolualdehyde.

  • PDF

Synthesis and Cationic Polymerization of Multifunctional Vinyl Ethers Containing Dipolar Electronic Systems

  • 이주연;김지향;김민정
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.307-313
    • /
    • 1999
  • 2,4-Di-(2'-vinyloxyethoxy)benzylidenemalononitrile (la), methyl 2,4-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (lb), 3,4-di-(2'-vinyloxyethoxy)benzylidene malononitrile (2a), methyl 3,4-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (2b), 2,5-di-(2'-vinyloxyethoxy)benzylidenemalononitrile (3a), methyl 2,5-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (3b), 2,3-di-(2'-vinyloxyethoxy)benzylidenemalononitrile (4a), and methyl 2,3-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (4b) were prepared by the condensation of 2,4-di-(2'-vinyloxyethoxy)benzaldehyde, 3,4-di-(2'-vinyloxyethoxy)benzaldehyde, 2,5-di-(2'-vinyloxyethoxy) benzaldehyde, and 2,3-di-(2'-vinyloxyethoxy)benzaldehyde with malononitrile or methyl cyanoacetate, respectively. Trifunctional divinyl ether monomers 1-4 were polymerized readily with boron trifluoride etherate as a cationic initiator to give optically transparent swelling poly(vinyl ethers) 5-8 havina oxybenzylidenemalononitrile and oxycyanocinnamate, which is presumably effective chromophore for second-order nonlinear optical applications. Polymers 5-8 were not soluble in common organic solvents such as acetone and DMSO due to crosslinking. Polymers 5-8 showed a thermal stability up to 300 ℃ in TGA thermograms, which is acceptable for electrooptic device applications.

Effect of Toluene Administration on the Activity of Serum Xanthine Oxidase in Rats (흰쥐에게 Toluene 투여가 혈청 Xanthine Oxidase 활성 변동에 미치는 영향)

  • 전태원;강회양;윤종국
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.279-288
    • /
    • 1995
  • To apply the serum xanthine oxidase (XO) determining for the index of the toluene intoxication, the serum XO activity was compared with the other parameters, the activities of serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), 5'-nucleotidase(5'-NT), alkaline phosphatase(ALP), guanase(GDA) and $\gamma$-gIutamyl transpeptidase(T-GTP). Concomitantly, the cause of increased level of serum XO was clarified in the present experimental conditions. Although the other serum enzyme activities, ALT, AST, 5'-NT, ALP, GDA and $\gamma$-GTP were respectively not found to be different between control group and toluene-treated group, the serum XO activity in toluene-treated group showed the higher levels than that in the control group. These suggested that the determination of serum XO activity could be used for monitoring the intoxication of toluene. On the other hand, the activities of XO both in the serum and liver were higher in toluene-treated or benzaldehyde-treated rats than those in each control group. In the pooled liver XO from each group, toluene-treated or benzaldehyde-treated group showed the higher $V_{max}$ value than the control group, whereas no changes were observed in liver XO activities between the control liver specimen and that preincubated with bertzaldehyde in vitro. The present results indicate that the increased level of XO in toluene-treated rats is due to the result of enzyme protein induction in liver cell by the benzaldehyde metabolized from toluene. All the more, the benzaldehyde may be acted as a substrate for XO, since the benzaldehyde induced the increased activity of both liver and serum XO, and no changes were found in purine catabolite, uric acid in serum or urine and liver purine catabolizing enzymes, adenosine deaminase, GDA, uricuse except XO in toluene-treated rats.

  • PDF

Pseudo-Binary Diffusion Coefficients of Organic Aroma Component - I. The Diffusion Coefficient of Benzaldehyde in Aqueous Sugar Solution - (유기방향물질의 의사 2성분계 확산계수 - 제1보 : 설탕수용액중 Benzaldehyde의 확산계수 -)

  • Kang, An-Soo;Lee, Tae-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.315-323
    • /
    • 1982
  • The measurement of cell constant in a diaphragm-cell method is the most important factor. In order to get the correct cell constant, the diffusion coefficients of potassium chloride were measured, at various concentration and temperature of potassium chloride solution, and at the stirring rate in the cell. The pseudo-binary diffusion coefficients of organic aroma component (benzaldehyde) in sugar solution has been measured at various concentration and temperature with the cell constant obtained above. Experimental results were compared and discussed with the semi-empirical epuations from literatures. And, especially, the diffusion coefficient of benzaldehyde, $D_{ba}$ for a small solute diffusing in a viscous solvent of larger molecules is proportional to the -0.82 power of the viscosity of aqueous sugar solution, ${\mu}$ at constant temperature, $D_{ba}{\mu}^{0.82}=constant$.

  • PDF

Herbicidal Activity of Benzaldehyde in Cajuput (Melaleuca cajeputi) Essential Oil (천연정유 Cajuput (Melaleuca cajeputi) 유래 Benzaldehyde의 살초활성)

  • Lee, Sa-Eun;Yun, Mi-Sun;Yeon, Bo-Ram;Choi, Jung-Sup;Cho, Nam-Kyu;Hwang, Ki-Hwan;Wang, Hai-Ying;Kim, Song-Mun
    • Korean Journal of Weed Science
    • /
    • v.30 no.3
    • /
    • pp.191-198
    • /
    • 2010
  • The objective of this study was to find herbicidal compounds from seven different plant essential oils such as amyris (Amyris balsamifera), cajuput (Melaleuca cajeputi), geranium (Pelargonium graveolens), lavender (Lavendula spp.), mandarin (Citrus reticulata), pine (Pinus spp.) and rosemary (Rosmarius officinale), and determine their herbicidal activities. The in vitro herbicidal activity of cajuput essential oil was the highest among six essential oils ($GR_{50}$ value, $425{\mu}g\;g^{-1}$) and major chemical components in cajuput essential oil were eucalyptol (37.2%), ${\alpha}$-terpineol (11.6%), benzaldehyde (5.2%), linalool (4.1%), ${\alpha}$-pinene (2.5%) and ${\beta}$-pinene (2.4%), and their $GR_{50}$ values were 2,731, 500, 50, 372, 4,363, and $4,671{\mu}g\;g^{-1}$, respectively. Soil application of cajuput essential oil and benzaldehyde did not show any herbicidal activity at 80 kg $ha^{-1}$. When cajuput essential oil was applied to foliar at 80 kg $ha^{-1}$, narrow-leaved plants such as sorghum (Sorghum bicolar), barnyardgrass (Echinochloa crus-galli), and southern crabgrass (Digitaria ciliaris) were killed 100%, however, broad-leaved plants indian jointvetch (Aeschynomeme indica), velvet leaf (Abutilon theophrasti), cocklebur (Xanthium strumarium), Japanese morningglory (Calystegia japonica) were not killed, indicating the cajuput essential oil was effective to control narrow-leaved plants. Herbicidal activities of benzaldehyde at 80 kg $ha^{-1}$, to those plants were 20, 60 and 95%, respectively. Overall data showed that the herbicidal activity of cajuput essential oil was in part due to benzaldehyde.

Two Photon Dissociation of Benzene, Phenylacetylene, and Benzaldehyde at 243 nm: Translational Energy Releases in the H Atom Channel

  • Shin, Seung-Keun;Kim, Hong-Lae;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.286-290
    • /
    • 2002
  • Hydrogen atom production channels from photodissociation of benzene, phenylacetylene, and benzaldehyde at 243 nm have been investigated by detecting H atoms using two photon absorption at 243.2 nm and induced fluorescence at 121.6 nm. Translational energies of the H atoms were measured by Doppler broadened H atom spectra. By absorption of two photons at 243 nm, the H atoms are statistically produced from benzene and phenylacetylene whereas the H atoms from the aldehyde group in benzaldehyde are produced from different pathways. The possible dissociation mechanisms are discussed from the measured translational energy releases.